匈牙利算法程序MATLAB
“匈牙利算法程序MATLAB”相关的资料有哪些?“匈牙利算法程序MATLAB”相关的范文有哪些?怎么写?下面是小编为您精心整理的“匈牙利算法程序MATLAB”相关范文大全或资料大全,欢迎大家分享。
匈牙利算法及程序
匈牙利算法及程序
匈牙利算法自然避不开Hall定理,即是:对于二部图G,存在一个匹配M,使得X的所有顶点关于M饱和的充要条件是:对于X的任意一个子集A,和A邻接的点集为T(A),恒有: │T(A)│ >= │A│
匈牙利算法是基于Hall定理中充分性证明的思想,其基本步骤为:
1.任给初始匹配M;
2.若X已饱和则结束,否则进行第3步;
3.在X中找到一个非饱和顶点x0,作V1 ← {x0}, V2 ← Φ;
4.若T(V1) = V2则因为无法匹配而停止,否则任选一点y ∈T(V1)\V2;
5.若y已饱和则转6,否则做一条从x0 →y的可增广道路P,M←M?E(P),转2;
6.由于y已饱和,所以M中有一条边(y,z),作 V1 ← V1 ∪{z}, V2 ← V2 ∪ {y}, 转4;
设数组up[1..n] --- 标记二分图的上半部分的点。
down[1..n] --- 标记二分图的下半部分的点。
map[1..n,1..n] --- 表示二分图的上,下部分的点的关系。
True-相连, false---不相连。
over1[1..n],over2[1..n] 标记上下部分的已盖点。
use[1..n,1..n] - 表示该条边
sift算法的MATLAB程序
% [image, descriptors, locs] = sift(imageFile) %
% This function reads an image and returns its SIFT keypoints. % Input parameters:
% imageFile: the file name for the image. %
% Returned:
% image: the image array in double format
% descriptors: a K-by-128 matrix, where each row gives an invariant % descriptor for one of the K keypoints. The descriptor is a vector
% of 128 values normalized to unit length.
% locs: K-by-4 matrix, in which each row has the 4 values for a % keypoint
sift算法的MATLAB程序
% [image, descriptors, locs] = sift(imageFile) %
% This function reads an image and returns its SIFT keypoints. % Input parameters:
% imageFile: the file name for the image. %
% Returned:
% image: the image array in double format
% descriptors: a K-by-128 matrix, where each row gives an invariant % descriptor for one of the K keypoints. The descriptor is a vector
% of 128 values normalized to unit length.
% locs: K-by-4 matrix, in which each row has the 4 values for a % keypoint
粒子群算法通用matlab程序
% 优化函数以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m就可
%------基本粒子群优化算法(Particle Swarm Optimization, PSO)-----------
%------初始格式化-------------------------------------------------- clear all;
clc;
format long;
%------给定初始化条件---------------------------------------------- c1=1.4962; %学习因子1
c2=1.4962; %学习因子2
w=0.7298; %惯性权重
MaxDT=1000; %最大迭代次数
D=4; %搜索空间维数(未知数个数)
N=10; %初始化群体个体数目
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
遗传算法的MATLAB程序实例
遗传算法的程序实例
f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码)
initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码:
%Name: initpop.m %初始化
function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));
% rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值
1、将二进制数转化为十进制数(1) 代码:
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop)
[px,py]=size(pop);
遗传算法MATLAB程序设计
摘自 Matlab在数学建模中的应用, 北航出版社,2011.4
4.2遗传算法MATLAB程序设计
4.2.1程序设计流程及参数选取 4.2.1.1遗传算法程序设计伪代码
BEGIN
t = 0 ; %Generations NO.
初始化P(t) ; %Initial Population or Chromosomes 计算P(t) 的适应值; while (不满足停止准则) do begin t = t+1 ;
从P(t-1)中选择P(t) ; % Selection
重组P(t) ; % Crossover and Mutation 计算P(t) 的适应值; end END
4.2.1.2遗传算法的参数设计原则
在单纯的遗传算法当中,也并不总是收敛,即使在单峰或单调也是如此。这是因为种群的进化能力已经基本丧失,种群早熟。为了避免种
遗传算法MATLAB程序设计
介绍遗传算法MATLAB程序设计
摘自 Matlab在数学建模中的应用, 北航出版社,2011.4
4.2遗传算法MATLAB程序设计
4.2.1程序设计流程及参数选取 4.2.1.1遗传算法程序设计伪代码
BEGIN
t = 0 ; %Generations NO.
初始化P(t) ; %Initial Population or Chromosomes 计算P(t) 的适应值; while (不满足停止准则) do begin t = t+1 ;
从P(t-1)中选择P(t) ; % Selection
重组P(t) ; % Crossover and Mutation 计算P(t) 的适应值; end END
4.2.1.2遗传算法的参数设计原则
在单纯的遗传算法当中,也并不总是收敛,即使在单峰或单调也是如此。这是因为种群的进化能力已经基本丧失,种群早熟。为了避免种群的早熟,参数的设计一般遵从以下原则[5]:
(1)
蚁群算法matlab程序代码
先新建一个主程序M文件ACATSP.m 代码如下:
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%================================================================ =========
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 蚁群算法MATLAB程序最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 表示蚁群算法MATLAB程序信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%================================================================ =========
%% 蚁群算法MATLAB程序第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(
负荷预测的神经BP算法MATLAB程序
负荷预测的神经BP算法MATLAB程序:
%休息日预测
P=[0.9161 0.8988 0.7497 1.0000 0.7926 1.0000 1.0000 0.8281 0.7184 0.6344 0.9593 0.9614 0.9641 0.7721 0.7219 1.0000 0.6958 0.7766 1.0000 1.0000 1.0000 0.6927 0.7946 1.0000 1.0000 1.0000;
1.0000 1.0000 1.0000 0.7413 1.0000 0.8699 0.8963 1.0000 0.7152 0.9032 0.9898 0.8275 1.0000 1.0000 1.0000 0.7926 0.8551 0.6657 0.9905 0.7144 1.0000 1.0000 1.0000 0.4716 0.4082 0.0970;
0.4374 0.1343 0.3729 0.1634 0.3709 0.4904 0.2517 0.8050 0.7343 0.9743 0.7459 0.9578 0.6352 0.7792 0.9362 0.8128 0.8981
粒子群优化算法介绍及matlab程序
粒子群优化算法(1)—粒子群优化算法简介
PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化为一个数学问题。寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下:
当x=0.9350-0.9450,达到最大值y=1.3706。为了得到该函数的最大值,我们在[0, 4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0, 4]之间的一个速度。下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。直到最后在y=1.3706这个点停止自己的更新。这个过程与粒子群算法作为对照如下:
这两个点就是粒子群算法中的粒子。 该函数的最大值就是鸟群中的食物。
计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。
更新自己位置的公式就是粒子群