二次不等式例题

“二次不等式例题”相关的资料有哪些?“二次不等式例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次不等式例题”相关范文大全或资料大全,欢迎大家分享。

不等式第二讲--一元二次不等式

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

不等式第二讲:一元二次不等式

一、一元二次不等式的解法

判别式??b?4ac 方程2??0 有两个不等实根 ??0 有两个相等实根 ??0 无实根 f(x)?ax2?bx?c?0 二次函数 y y y y?ax2?bx?c(a?0) 的图象 不等式O x1 x2 x O x1?x2x O x ax?bx?c?0(a?0) 的解集 不等式ax?bx?c?0 22?x|x?x1或x?x2? ?b?xx???? 2a??R (a?0)的解集 二、总结规律: ?x|x1?x?x2? ? ? 1、方程f(x)?0的实根是函数y?f(x)的图像与x轴的交点,也是函数y?f(x)的零点。 2、方程f(x)?0的根就是不等式解集的端点,不等式解集的端点就是方程f(x)?0的根。 3、不等式大于0的解集就是方程的根之外,小于0就是方程的两根之间;(大于取两根之外,小于取两根之间)(开口向上,即二次系数大于0)

?a?04、①不等式ax?bx?c?0恒成立的条件是?;

??0?2②不等式ax?bx?c?0恒成立的条件是?2?a?0

???05、如果函数y?f(x)在区间?a,b?上的图像是连续不断的一条曲线,并且有

f(a)?f(b)?0,那么函数y

二次函数 不等式解法

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

复习:

一元二次方程:ax2+bx+c=0(a≠0) 1、判别式:

2、 韦达定理 x1,x2是方程的两个实数根

3、求根公式

例1:当m为何值时,关于x的方程x2-2(m+2)x+m2-1=0

1) 有两个正根;2)有一正根一负根;3)有两个大于2的根

二次函数:y=ax2+bx+c(a≠0)

顶点坐标

线),与x轴的交点坐标是

,交点式为

(仅限于与x轴有交点的抛物

。对称轴为直线

例1:已知二次函数y=ax2+2ax+1在-3≤x≤2上有最大值4,求a值

例2:求y=x2-4x-5在0≤x≤a上的最值

例3:f(x)=-x2+2ax+1-a在0≤x≤1上的最大值为2,求a

一元二次不等式的解法

步骤:1.二次项系数变为正 2.看能否因式分解 ①若能因式分解 口诀:大于两根之外,小于两根之间。②若不能因式分解 则算△ 再画图求解 例:(1)2x2-3x-2>0

(2)-3x2+6x-2>0 (3)4x2-4x+1>0 (4)-x2+2x-3>0

试解关于x的不等式 1、ax2-(a+1)x+1<0

2、(1-a)x2+4ax-(4a+1)>0

分式不等式解法:

高次不等式解法

数轴标根法 步骤 1.右边化为02.因式分解成多个因式相乘积的

《一元二次不等式与解法》典型例题透析

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

WORD格式 可编辑

《一元二次不等式及其解法》典型例题透析

类型一:解一元二次不等式 例1. 解下列一元二次不等式

(1)x?5x?0; (2)x?4x?4?0; (3)?x?4x?5?0 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析:

(1)方法一:

因为??(?5)2?4?1?0?25?0

所以方程x?5x?0的两个实数根为:x1?0,x2?5 函数y?x2?5x的简图为:

2222

因而不等式x?5x?0的解集是{x|0?x?5}.

2?x?0?x?0方法二:x?5x?0?x(x?5)?0?? 或?

x?5?0x?5?0??2解得??x?0?x?0 或 ?,即0?x?5或x??.

?x?5?x?52因而不等式x?5x?0的解集是{x|0?x?5}.

(2)方法一:

因为??0,

方程x2?4x?4?0的解为x1?x2?2. 函数y?x?4x?4的简图为:

2

所以,原不等式的解集是{x|x?2}

方法二:x?4x?4?(x?2)?0(当x?2时,(x?2)?0) 所以原不等式的解集是{x|x

10不等关系与一元二次不等式

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

10不等关系与一元二次不等式

【知识网络】

1、求解或判别不等关系式,利用性质进行比较大小;

2、求解一元二次不等式;

3、不等关系或一元二次不等式的解法的简单应用。 【典型例题】

例1:(1)已知a>b>c>0,若P=

b?ca?c,Q=,则 ( )

ba1,Q=1,PQ D.P

11??0,则下列不等式 ①a?b?ab;②|a|?|b|;③a?b;④ ab

( )

ba??2 中,正确的不等式有 ab

A.0个 B.1个 C.2个 D.3个 答案:C.解析: ①正确,②错误,③错误,④正确.也可用特殊值检验。

(3)若loga2<logb2<0,则 ( )

A.0<a<b<1 B.0<b<a<1 C. a>b>1

答案:B。解析:显然0

D. b>a>1

11??0,?0?log2a?log2b,?1?a?b?0。

log2alog2bx?3?x的解集是 . x

教材: 绝对值不等式与一元二次不等式练习课

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

教材: 绝对值不等式与一元二次不等式练习课

目的: 通过练习逐步做到能较熟练掌握上述两类不等式的解法。 过程:

一、复习:绝对值不等式与一元二次不等式的复习。 二、例题:

例1、解不等式 2?1?3?5x3?5x?2和② 1???2 4497解①:x?? 解②: x?

557979∴原不等式的解集是{x|x?? }∪{x|x?}={x|x??或x?}

55552?5x15?? 例2、解不等式 34652?5x15解:原不等式可化为:???? ??10??20x?11?10

6346121121 ∴ ∴原不等式的解集是{x| } ?x??x?202020203?5x4

解:原不等式可化为:① 1?

5?2?5x1????46(略) 或解:原不等式化为 ?32?5x15???346?例3、解关于x的不等式 2x?3?1?a (a?R)

解:原不等式可化为:2x?3?a?1

当 a+1>0 即a>?1时 ?(a+1)<2x+3?1时 原不等式的解集是 {x|?当a≤?1时 解集为?

例4、解不等式 2?1?4x?7

解一:原不等式可化为:2?4x?1?7

13?x??或x??4x?1?2?44 ??3?x??1或3?x?2 ? ???3244????x?

教材: 绝对值不等式与一元二次不等式练习课

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

教材: 绝对值不等式与一元二次不等式练习课

目的: 通过练习逐步做到能较熟练掌握上述两类不等式的解法。 过程:

一、复习:绝对值不等式与一元二次不等式的复习。 二、例题:

例1、解不等式 2?1?3?5x3?5x?2和② 1???2 4497解①:x?? 解②: x?

557979∴原不等式的解集是{x|x?? }∪{x|x?}={x|x??或x?}

55552?5x15?? 例2、解不等式 34652?5x15解:原不等式可化为:???? ??10??20x?11?10

6346121121 ∴ ∴原不等式的解集是{x| } ?x??x?202020203?5x4

解:原不等式可化为:① 1?

5?2?5x1????46(略) 或解:原不等式化为 ?32?5x15???346?例3、解关于x的不等式 2x?3?1?a (a?R)

解:原不等式可化为:2x?3?a?1

当 a+1>0 即a>?1时 ?(a+1)<2x+3?1时 原不等式的解集是 {x|?当a≤?1时 解集为?

例4、解不等式 2?1?4x?7

解一:原不等式可化为:2?4x?1?7

13?x??或x??4x?1?2?44 ??3?x??1或3?x?2 ? ???3244????x?

一元二次不等式导学案

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

一元二次不等式及其解法

一、学习目标

1.熟练掌握一元二次不等式的解法及其应用.

2.理解二次函数的图像、一元二次方程的根、一元二次不等式的解之间的关系.

二、基础知识

1

义: . 2、二次函数的图像、一元二次方程的根、一元二次不等式的解之间的关系.

3.指数、对数型不等式常使用

三、基础检测

1.不等式(x 2)(x 3) 0的解集是 .

2

2.不等式4x 12x 9 0的解集是.

3.函数y 4.不等式

4x x2 9的定义域是 .

x 1

0的解集是 . x 2

5. 不等式(x2 4x 5)(x2 4) 0的解集是 6.函数y lg(x2 3x 2)的定义域是 7.若点P(四、例题

【例1】解下列不等式

(1) x2 2x 3 0;(2)x2 x 1 0;(3)x2 x 30 0;(4)4x(1 x) 1 0.

【例2】解关于x的不等式x2 2ax 3a2 0.

变式:解关于x的不等式2x2 ax 2 0.

【例3】.解不等式

2

【例4】. 解关于x的不

一元二次不等式导学案

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

一元二次不等式及其解法

一、学习目标

1.熟练掌握一元二次不等式的解法及其应用.

2.理解二次函数的图像、一元二次方程的根、一元二次不等式的解之间的关系.

二、基础知识

1

义: . 2、二次函数的图像、一元二次方程的根、一元二次不等式的解之间的关系.

3.指数、对数型不等式常使用

三、基础检测

1.不等式(x 2)(x 3) 0的解集是 .

2

2.不等式4x 12x 9 0的解集是.

3.函数y 4.不等式

4x x2 9的定义域是 .

x 1

0的解集是 . x 2

5. 不等式(x2 4x 5)(x2 4) 0的解集是 6.函数y lg(x2 3x 2)的定义域是 7.若点P(四、例题

【例1】解下列不等式

(1) x2 2x 3 0;(2)x2 x 1 0;(3)x2 x 30 0;(4)4x(1 x) 1 0.

【例2】解关于x的不等式x2 2ax 3a2 0.

变式:解关于x的不等式2x2 ax 2 0.

【例3】.解不等式

2

【例4】. 解关于x的不

课时达标检测(三十一) 不等式的性质及一元二次不等式

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

第 1 页 共 6 页

课时达标检测(三十一) 不等式的性质及一元二次不等式

[小题对点练——点点落实]

对点练(一) 不等式的性质

a+macc1

1.(2018·安徽合肥质检)下列三个不等式:①x+x≥2(x≠0);②ab>c>0);③>

b+mb(a,b,m>0且a

A.3 C.1

B.2 D.0

cc11

解析:选B 当x<0时,①不成立;由a>b>c>0得a

-=,由a,b,m>0且a0恒成立,故③恒成立,所以选B. b+mbb?b+m?b+mb

2.若a>b>0,cbd C.ad

B.acbc

解析:选B 根据c-d>0,由于a>b>0,故-ac>-bd,ac

A.若a<1,b<,则a>b

21

B.若a<1,b<,则a

21C.若a>1,b>,则a>b

21

D.若a>1,b>,则a

2

13

b-?2+,对于A,取a=-1,b=0,a>b解析:选D 由题意知,a2=b2-b+1=??2?4不成立;对于B,取a=

571

,b=,ab不成立;88

1

对于D,若a>1,则b2-b>0,又b>,得b>1,1-b<0,所以a2=b2-b+1

2选D.

14.若0

2A.a C.2ab

1B. 2D.a2+b2

第 2 页 共 6 页

2

1212?a+b?解析:选D 因为0=,2ab=2a(1-a)222

1111

a-?2+<,所以a,,2ab,a2+b2中最大的数为a2+b2. =-2??2?222

5.(2018·山西康

区间上的二次函数、二次方程和二次不等式

标签:文库时间:2024-11-15
【bwwdw.com - 博文网】

学术论坛

SC畦NCE&TECHNOLOGY

区间上的二次函数~●-次方程和=次不等式

高立群邵亚茹

(陕西省富平县立诚中学

71171

1)

摘要:本文着重讨论在指定区间内二次函数的最值问题,二次方程根的分布问题,二次不等式的判解问题的一些结论及其应用。关键词:区间二次函数二次方程二次不等式中图分类号:G633.62文献标识码:A文章编号:1672—379l(2007)12(a)一0207—02二次函数是重要的初等函数之一,很多问题都转化为二次函数来处理,二次函数、一元二次方程、二次不等式,它们之间相互联系,互为工具,而在指定区间内研究其局部性质是三者深化的主要内容,并且随着各类考试、竞赛的深入不断深化。

例2:设f(x)是定义在区间(一*,十*)上的以2为周期的函数,对k∈z用Ik表示区间(2k一1,2k+1),已知x∈I.时,f(x)=x2。

I、求f(x)在Ik上的解析式Ⅱ、对自然数k求集合Mk={o【}使方程f(x)=ax在Ik上有两个不相等的实数根}

解:

髂m忙:墨学

f(x)>O在【m,n]上有解C>f(m)>O或f

(n)>0

1二次函数f(x)=ax‘+bx+c(a≠O)在【m,nJ内的最值。a>0时

例3:1999年高中联赛一试(三)

题目:已知当x∈