勾股定理在中考中的占比
“勾股定理在中考中的占比”相关的资料有哪些?“勾股定理在中考中的占比”相关的范文有哪些?怎么写?下面是小编为您精心整理的“勾股定理在中考中的占比”相关范文大全或资料大全,欢迎大家分享。
勾股定理(中考)m
勾股定理
要点一:勾股定理及其逆定理 一、选择题
1.(2009·达州中考)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是( )
A.13 2、(2009·滨州中考)如图,已知△边BC的长为(A.21
4、(2009·湖州中考为直径作半圆,面积分别记为5.(2009·长沙AB?5cm,第 1 页 共 10 页 B.26 C.47 D.94
ABC中,AB=17,AC=10,BC边上的高 ) B.15
C.6
D.以上答案都不对
)如图,已知在Rt△ABC中,?ACB?Rt?,AB?4,分别以S1,S2,则S1+S2的值等于 .
考)如图,等腰△ABC中,AB?AC,AD是底BC?6cm,则AD? cm.
AD=8, 则
AC,BC的高,若
中边上
6.(2009·安顺中考)图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。在Rt△ABC中,若直角边AC=6,BC=6,将四个直角三角形
勾股定理的逆定理(简)
一、课题:勾股定理的逆定理 二、课时数:1课时
三、主备人:简远福 四、执教人:简远福
五、班级:八(5)班 六、授课时间:2015年3月23日第二节
七、本组备课成员:向利奎、吴明瑞、简远福
17.2 勾股定理的逆定理(1)
教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理. 2.探究勾股定理的逆定理的证明方法.
3.理解原命题、逆命题、逆定理的概念及关系. 重点、难点
1.重点:掌握勾股定理的逆定理及证明. 2.难点:勾股定理的逆定理的证明. 3.难点的突破方法:
先让学生阅读课本第31页古埃及人制作三角形的方法,并要求学生做简单介绍,再动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.
为学生搭好台阶,扫清障碍.
⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.
⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.
⑶先做直角,再截
勾股定理
北师大版八年级上册数学 第一章 探究勾股定理专项练习
探索勾股定理(01) 1.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE
⊥BC
垂足分
别是D
、E.则图中全等的三角形共有( )
2.如图,在边长为4的等边三角形ABC中,AD是BC
边上的高,点E,F是AD上的两点,则图中阴影部分的面积是( )
4.如图,点A是5×5网格图形中的一个格点(小正方形的顶点),图中每个小
正方形的边长为1,以A为其中的一个顶点,面积等于5/2的格点等腰直角三角形(三角形的三个顶点都是格点)的个数是( )
5.如图,在把易拉罐中
的水
倒入
一
个圆
水杯的过程中,若水杯中的水在点P与易拉罐刚好接触,则此时水杯中的水深为( )
6.如图,将圆桶中的水倒入一个直径为40cm
,高为55cm的圆口容器中,圆桶放置的角度与水平线的夹角为45度.若使容器中的水面与圆桶相接触,则容器中水的深度至少应为
( )
7.如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )
8
.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则
AC
勾股定理的别名
简介 勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。 他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。 勾股定理是一个基本的几何定理,它是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。 勾股定理的来源 毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。 毕达哥拉斯 在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。 实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,其所以
“勾股定理的应用”
篇一:勾股定理的应用举例练习题
勾股定理的应用举例练习题
1、如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为( )
A.6B.3C. D.
2、如图,长方体ABCD﹣A1B1C1D1中,AB=3,BC=2,BB1=1,一蚂蚁从A点出发,沿长方体表面爬到C1点处觅食,则蚂蚁所行路程的最小值为( )
A.B.C.
D.
3、小明家与学校的距离仅有500m,但需要拐一个直角弯才能到达,已知拐弯处到学校有400m,则家门口到拐弯处有( )
A.300mB.350m C.400mD.450m
4、小颖家在学校正东600米,小丽家在学校正北800米,小颖和小丽家的直线距离为( )
A.600米 B.800米 C.1000米D.不能确定
5、如图一个圆桶儿,底面直径为12cm,高为8cm,则桶内能容下的最长的木棒为( )
A.8cmB.10cm C.4cmD.20cm
6、如图,现要把阶梯形楼梯铺上地毯,所需地毯长度为( )
A.米B.4米C.8米 D.(4+)米
7、如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B
18.2 勾股定理的逆定理(1)
www.czsx.com.cn
18.2 勾股定理的逆定理
从容说课
本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,?引出逆命题的概念.接着探究证明命题2的思路,用三角形全等证明命题2后,顺势引出逆定理的概念.
命题1,命题2属于原命题成立,逆命题也成立的情况.为了防止学生由此误认为原命题成立,逆命题一定成立,教科书特别举例说明有的原命题成立,逆命题不成立. 本节的重点是,如何用三角形三边之间的关系判断一个三角形是否为直角三角形.难点是会应用直角三角形判别方法解决实际问题,教学时要给学生充分交流的时间和空间,在学生学会自主学习.
18.2 勾股定理的逆定理(一)
教学时间 第5课时 三维目标 一、知识与技能
1.掌握直角三角形的判别条件. 2.熟记一些勾股数.
3.掌握勾股定理的逆定理的探究方法. 二、过程与方法
18.2 勾股定理的逆定理(1)-
www.czsx.com.cn
18.2 勾股定理的逆定理
从容说课
本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,?引出逆命题的概念.接着探究证明命题2的思路,用三角形全等证明命题2后,顺势引出逆定理的概念.
命题1,命题2属于原命题成立,逆命题也成立的情况.为了防止学生由此误认为原命题成立,逆命题一定成立,教科书特别举例说明有的原命题成立,逆命题不成立. 本节的重点是,如何用三角形三边之间的关系判断一个三角形是否为直角三角形.难点是会应用直角三角形判别方法解决实际问题,教学时要给学生充分交流的时间和空间,在学生学会自主学习.
18.2 勾股定理的逆定理(一)
教学时间 第5课时 三维目标 一、知识与技能
1.掌握直角三角形的判别条件. 2.熟记一些勾股数.
3.掌握勾股定理的逆定理的探究方法. 二、过程与方法
3 勾股定理的应用
第一章
勾股定理
3. 勾股定理的应用
教学目标 1能运用勾股定理及直角三角形的判别条件 解决简单的实际问题。 2学会观察图形,探索图形间的关系。 3学会将实际问题抽象成几何图形。
从二教楼到综合楼怎样走最近? 说明理由.
石室联中平面图一 教 楼 综 合 楼 二 教 楼
操场两点之间,线段最短.
问题情境在一个圆柱石凳上, 若小明在吃东西时留下了一 点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息, 于是它想从A处爬向B处,你 们想一想,蚂蚁怎么走最近?A B
合作探究以小组为单位,研究蚂 蚁爬行的最短路线.B
A
A’
d
B
A’
B
A
A
蚂蚁A→B的路线OB B
A
A
怎样计算AB?A’
r
O
B
A’
B
h
侧面展开图
A
A
在Rt△AA’B中,利用勾股定理可得: AB 2 AA 2 A ' B 2 其中AA’是圆柱体的高,A’B是 底面圆周长的一半(πr) .
若已知圆柱体高为12 cm,底面半径为 3 cm,π取3,则:
AB 12 (3 3) AB 152 2 2A’
3
O
B侧面展开图
A’12
3π B
12
A
A
方法提炼 用所学数学知识去解决实际问题的关键: 根据实际问题建立数学模型;
具体步骤:1. 审题——分析实际问题; 2. 建模——建立相
勾股定理课题
课题:“勾股定理”第一课时
内容:教材分析、教学过程设计、设计说明 一、 教材分析
(一)教材所处的地位
这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)根据课程标准,本课的教学目标是: 1、 能说出勾股定理的内容。
2、 会初步运用勾股定理进行简单的计算和实际运用。
3、 在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理
本课的教学难点:以直角三角形为边的正方形面积的计算。 二、教法与学法分析: 教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生
勾股定理的证明方法
篇一:勾股定理16种证明方法
勾股定理的证明(看前5个就可以了)
【证法1】(课本的证明)
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即
11
a2?b2?4?ab?c2?4?ab
22, 整理得 a2?b2?c2.
【证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积
1ab
等于2. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、
C三点在一条直线上,C、G、D三点在一条直线上.
∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF.
∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o.
∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2.
∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA.
∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o,
∴ ∠D