大一高数上册学霸笔记
“大一高数上册学霸笔记”相关的资料有哪些?“大一高数上册学霸笔记”相关的范文有哪些?怎么写?下面是小编为您精心整理的“大一高数上册学霸笔记”相关范文大全或资料大全,欢迎大家分享。
大一高数(上)
姓名:班级:学号:
第一章 函数、极限、连续(小结)
一、函数
1. 邻域:U(a),U(a) 以a为中心的任何开区间; 2. 定义域:y?tanx{x?k??};y?cotx{x?k?};
??2y?arctanx{x?R,y?(?,)};y?arcsinx{x?[?1,1],y?[?,]}
2222 y?arccosx{x?[?1,1],y?[0,?]}.
二、极限
1. 极限定义:(了解)
????limxn?a? 若对于???0,?N?Z?,st. 当n?N时,有|xn?a|??;
n??Note:|xn?a|???n??
x?x0limf(x)?A????0,???0,st. 当0?x?x0??时,有f(x)?A??;
Note:f(x)?A???x?x0??
limf(x)?A????0,?X?0,st. 当x?X时,有f(x)?A??;
x??Note:f(x)?A???x?? 2.函数极限的计算(掌握)
??f(x)?A?f(x0f(x)?A;(1) 定理: lim(分段函数) )?f(x0)?lim??x?x0x?x0x2?13?x?1?x0(2)型:①约公因子,有理化; 比如:lim3,lim;
x?1x?1x
高数上册
第一章 函数、极限与连续
第一节 函数
内容要点
一、实数与区间
实数的概念;实数的连续性;有限区间,无限区间。 二、邻域
领域的定义;领域的中心;领域的半径。 三、函数的概念
函数是描述变量间相互依赖关系的一种数学模型. 函数的定义、函数的图形、函数的表示法 四、函数特性
函数的有界性;函数的单调性;函数的奇偶性;函数的周期性. 五、数学建模——函数关系的建立
为解决实际应用问题, 首先要将该问题量化, 从而建立起该问题的数学模型, 即建立函数关系;依题意建立函数关系;依据经验数据建立近似函数关系。
例题选讲
例1 函数y?2. 定义域D?(??,??), 值域Rf?{2}. ?x,例2 (E01)绝对值函数 y?|x|????x,x?0x?0
例3 判断下面函数是否相同, 并说明理由. (1) y?1与y?sinx?cosx;
(2) y?2x?1与x?2y?1.
在自变量的不同变化范围中, 对应法则用不同的表达方式来表示的函数, 称为分段函数.
22?1,x?0,?(1)(E02)符号函数 y?sgnx??0,x?0, x?sgnx.|x|.
??1,x?0.?(2)(E03)取整函数y?[x], 其中, [x]表示不超过x的
高数上册
第一章 函数、极限与连续
第一节 函数
内容要点
一、实数与区间
实数的概念;实数的连续性;有限区间,无限区间。 二、邻域
领域的定义;领域的中心;领域的半径。 三、函数的概念
函数是描述变量间相互依赖关系的一种数学模型. 函数的定义、函数的图形、函数的表示法 四、函数特性
函数的有界性;函数的单调性;函数的奇偶性;函数的周期性. 五、数学建模——函数关系的建立
为解决实际应用问题, 首先要将该问题量化, 从而建立起该问题的数学模型, 即建立函数关系;依题意建立函数关系;依据经验数据建立近似函数关系。
例题选讲
例1 函数y?2. 定义域D?(??,??), 值域Rf?{2}. ?x,例2 (E01)绝对值函数 y?|x|????x,x?0x?0
例3 判断下面函数是否相同, 并说明理由. (1) y?1与y?sinx?cosx;
(2) y?2x?1与x?2y?1.
在自变量的不同变化范围中, 对应法则用不同的表达方式来表示的函数, 称为分段函数.
22?1,x?0,?(1)(E02)符号函数 y?sgnx??0,x?0, x?sgnx.|x|.
??1,x?0.?(2)(E03)取整函数y?[x], 其中, [x]表示不超过x的
大一高数习题和答案
一、选择题
1、某质点作直线运动的运动学方程为x?3t?2t2(SI), 则该
质点作 ( ) (A) 匀加速直线运动,加速度沿x正方向. (B) 匀加速直线运动,加速度沿x负方向. (C) 匀减速直线运动,加速度沿x正方向. (D) 匀减速直线运动,加速度沿x负方向.
2、物体在恒力F作用下作直线运动,在时间?t1内速率由v增加到2v,在时间?t2内速率由2v增加到3v,设F在?t1内的冲量是I1,在?t2内的冲量是I2,那么 ( ) (A)I1?I2 (B) I1?I2
(C) I1?I2 (D) 不能确定
3、物体在恒力F作用下作直线运动,在时间?t1内速度由v增
3v,设F在?t1内加到2v,在时间?t2内速度由2v增加到作的功是W1,在?t2内作的功是W2,那么 ( ) (A) W1?W2 (B) W1?W2
(C) W1?W2 (D) 不能确定
??F4、关于电场强度定义式E?q0,下列说法中哪个是正确
的?
大一高数复习资料
高等数学(本科少学时类型)
第一章 函数与极限
第一节 函数
○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) EMBED Equation.3 ??
EMBED Equation.3 ??
第二节 数列的极限
○数列极限的证明(★)
【题型示例】已知数列 EMBED Equation.3 ??,证明?? EMBED Equation.3 ????
??
【证明示例】?? EMBED Equation.3 ??????语言
1.由?? EMBED Equation.3 ????化简得?? EMBED Equation.3 ??????,
??
∴?? EMBED Equation.3 ????
??
2.即对?? EMBED Equation.3 ??????,?? EMBED Equation.3 ????,当?? EMBED Equation.3
??
??????时,始终有不等式?? EMBED Equation.3 ????成立,
??
∴?? EMBED Equation.3 ????
??
第三节 函数的极限
○ EMBED Equation.3 时函数极限的证明(★)
【题型示例】已
大一高数微积分下册答案
第六章 定积分
§6.1~6.2 定积分的概念、性质
一、填空题
1、设f(x)在[a,b]上连续,n等分[a,b]:a?x0?x1??xn?1?xn?b,并取小区
nb?ab?a)??间左端点xi?1,作乘积f(xi?1)?,则lim?f(xi?1n??nni?1??2baf(x)dx.
2、根据定积分的几何意义,
??20xdx?2,
?1?11?x2dx?,
??sinxdx??0.
3、设f(x)在闭区间[a,b]上连续,则
?baf(x)dx??f(t)dt?ab0.
二、单项选择题
1、定积分
?baf(x)dx (C) .
(A) 与f(x)无关 (B) 与区间[a,b]无关 (C) 与变量x采用的符号无关 (D) 是变量x的函数 2、下列不等式成立的是 (C) . (A) (C)
?21x2dx??x3dx (B) ?lnxdx??(lnx)2dx
111222?10xdx??ln(1?x)dx (D) ?edx??(1?x)dx
00011x13、设f(x)在[a,b]上连续,且
?baf(x)dx?0,则 (C)
同济大一高数期中复习题
高数复习题高数复习高数考试高数题目同济高数
一、常数项无穷级数
1. lim un = 0 是级数 ∑ un 收敛的 .n →∞n =1
∞
条件. 条件.
解:必要非充分. 必要非充分.
ln n 3 2. ∑ n = . n=0 2
∞
.
解:公比 q =
ln 3 1 < 1 的等比级数收敛且和 s = . 2 1 ln 3 2∞
1 3.对于无穷级数 ∑ 2 p ,下面中正确的是 [ ]. . . n =1 n (A) 仅当 p > 1 时收敛; 时收敛; (B) 仅当 p < 1 时收敛; 时收敛;(C) 仅当 p = 1 时收敛; 时收敛; (D) 仅当 p > 1 2 时收敛. 时收敛. ∞ 1 时级数收敛. 解: p 级数 ∑ 2 p 仅在 2 p > 1 ,即 p > 1 2 时级数收敛. n =1 n
高数复习题高数复习高数考试高数题目同济高数
4.若 ∑ | un | 收敛,则下面命题中不正确的是 . 收敛,
∞
[
]. .
(A) ∑ un 必收敛; 必收敛;n =1
∞ n =1
(B) | un | 必单调减少; 必单调减少;
(C) lim un = 0 ;n →∞
(D) ∑ ( 1) un 必收敛.
大一高数复习资料【全】(1)
高等数学(本科少学时类型) 第一章 函数与极限
第一节 函数
○函数基础(高中函数部分相关知识)
(★★★) ○邻域(去心邻域)(★) U a, x|x a
U a, x|0 x a
始终有不等式f x A 成立,
f x A ∴limx
第二节 数列的极限 ○数列极限的证明(★)
【题型示例】已知数列 xn ,证明lim xn a x
【证明示例】 N语言
1.由xn a 化简得n g ,
∴N g
2.即对 0, N g 。当n N时,
始终有不等式xn a 成立,
xn a ∴limx
第三节 函数的极限
○x x0时函数极限的证明(★) 【题型示例】已知函数f x ,证明
limf x A x x
第四节 无穷小与无穷大
○无穷小与无穷大的本质(★)
函数f x 无穷小 limf x 0 函数f x 无穷大 limf x ○无穷小与无穷大的相关定理与推论
(★★)
(定理三)假设f x 为有界函数,g x 为
无穷小,则lim f x g x 0 (定理四)在自变量的某个变化过程中,若f x 为无穷大,则f 1 x 为无穷小;反之,若f x 为无穷小,且
f x 0,
梁一高 - 新闻采访学
梁一高《现代新闻采访学教程》
第一章 新闻记者 一、记者的起源
(一)从记者工作角度,马恩给我们的启示:①完全服从无产阶级革命事业②热爱真理③热爱人民,使人民的重视代言人。反映人民的愿望,为人民的利益写作,是马恩写作的准则④尊重事实,重视调查研究。
(二)中国记者队伍的特点:①一支有觉悟能战斗的队伍;②一支受到革命的进步影响的队伍;③一支在党的关怀下成长的队伍。
(三)我国无产阶级记者优良传统:①坚持党的领导,及时准确的宣传党的路线方针政策;②深入群众、实际,同人民大众同呼吸、共命运;③调查研究,实事求是,坚决反对“客里空”;④报道有的放矢,讲究策略和方式;⑤认真负责,一丝不苟的工作作风;⑥团结互助,艰苦奋斗的精神。
(四)资产阶级记者值得借鉴之处:①嗅觉灵敏②会抓新闻③采访中的坚持主动、锲而不舍③善于积累资料、认真做好采访准备④善于“抢”新闻,采访效率高⑤在访问和观察方面技巧高超。
二、记者的类型
(一)专业记者:①指专门采访采访报道某一领域的记者;②党的新闻媒体开始设专业记者大约在抗日战争时期;③既要熟悉专门业务,又要顾全大局;④一般以两种方式出现:专门的记者、编采合一的记者。
(二)机动记者:①特点:机动灵活、随时出击;②素质:政治水平
Unit 2学霸笔记
按住Ctrl键单击鼠标打开名师视频析题教学播放
Unit 2 What time do you go to school?
听力部分(共20分)
I. 听对话,选择与对话内容相符的图片(略)
II. 听下面5段对话和问题, 选择最佳选项(每小题1分,共5分) ( b)6. A. At 6:00.B. At 6:15.C. At 6:30.
( c)7. A. At school. B. At home. C. At a store.
( a)8. A. He usually watches TV.B. He usually plays tennis.
C. He usually plays computer games. ( c)9. A. They run to school.
B. They take the number thirty bus to school. C. They take the number three bus to school. ( a)10. A. At 5:20 pm. B. At 5:40 pm. C. At 7:20 pm.
III. 听长对话,根据所听内容选择最佳答