初中数学压轴题常见解题模型及套路
“初中数学压轴题常见解题模型及套路”相关的资料有哪些?“初中数学压轴题常见解题模型及套路”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学压轴题常见解题模型及套路”相关范文大全或资料大全,欢迎大家分享。
初中(中考)数学常见解题模型及思路(压轴题题眼全覆盖)
上下:2.04 左右:2.17
初中数学常见解题模型及思路(自有定理)
A. 代数篇:
1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。
设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=
108 余例仿此—— 9992.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y;x-y;xy;
x2?y2 中,知二求二。
222 (x?y)?x?y?2xy?2x?2y(? x?)2y2?xy2222 (x?y)?x?y?2xy?(x?)y?4 xy 加减配合,灵活变型。
2(x?)?x2?3.特殊公式
1x1?2的变型几应用。 x24.立方差公式:a3?b3? (a?b)(a2mab?b2)5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略
6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+2222n 令S=1+
初中(中考)数学常见解题模型及思路(压轴题题眼全覆盖)
上下:2.04 左右:2.17
初中数学常见解题模型及思路(自有定理)
A. 代数篇:
1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。
设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=
108 余例仿此—— 9992.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y;x-y;xy;
x2?y2 中,知二求二。
222 (x?y)?x?y?2xy?2x?2y(? x?)2y2?xy2222 (x?y)?x?y?2xy?(x?)y?4 xy 加减配合,灵活变型。
2(x?)?x2?3.特殊公式
1x1?2的变型几应用。 x24.立方差公式:a3?b3? (a?b)(a2mab?b2)5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略
6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+2222n 令S=1+
初中数学常见解题模型及套路(所有二级定理:解题必备的自有定理、课外定理)
上下:2.04 左右:2.17
初中数学压轴题常见解题模型及套路(自有定理)
A. 代数篇:
1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。
设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=
108 余例仿此—— 9992.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y;x-y;xy;
x2?y2 中,知二求二。
222?x?y?2xy?2x?2y(? (x?y)x?)2y2?
xy222?x?y2?2xy?(x?)y?4 (x?y) xy 加减配合,灵活变型。
1213.特殊公式(x?)?x2?2?2的变型几应用。
xx(a?b)(a2mab?b2)4.立方差公式:a3?b3?
5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+···+2017的和。三种方法举例:略
6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+···2n 令S
初中数学常见解题模型及思路-名师总结的“自有定理”
上下:2.04 左右:2.17
初中数学压轴题常见解题模型及套路(自有定理)
A. 代数篇:
1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。
设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=
108 余例仿此—— 9992.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y;x-y;xy;
x2?y2 中,知二求二。
222 (x?y)?x?y?2xy?2x?2y(? x?)2y2?xy2222 (x?y)?x?y?2xy?(x?)y?4 xy 加减配合,灵活变型。
2(x?)?x2?3.特殊公式
1x1?2的变型几应用。 x24.立方差公式:a3?b3? (a?b)(a2mab?b2)5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略
6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+2222n 令S
初中数学常见解题模型及思路(中考数学难题破解自有定理)
上下:2.04 左右:2.17
初中数学压轴题常见解题模型及套路(自有定理)
A. 代数篇:
1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。 例.把0.108108108???化为分数。
设S=0.108108108??? (1) 两边同乘1000得:1000S=108.108108???(2) (2)-(1)得:999S=108 从而:S=
108 余例仿此—— 9992.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y;x-y;xy;
x2?y2 中,知二求二。
222 (x?y)?x?y?2xy?2x?2y(? x?)2y2?xy2222 (x?y)?x?y?2xy?(x?)y?4 xy 加减配合,灵活变型。
2(x?)?x2?3.特殊公式
1x1?2的变型几应用。 x24.立方差公式:a3?b3? (a?b)(a2mab?b2)5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。 例.求:1+2+3+222+2017的和。三种方法举例:略
6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+2222n 令S
初中数学中考压轴题
初中数学中考压轴题
初中数学中考压轴题精选部分解析
1、(2006 广东省实验区)如图所示,在平面直角坐标系中,四边形OABC 是等腰梯形,BC∥OA,OA=7 ,AB=4 ,
∠COA=60°,点P 为x 轴上的一个动点,点 P不及点O 、点A 重合.连结CP ,过点P 作 PD交 AB于点D .
(1)求点B 的坐标;
(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;
(3)当点P 运动什么位置时,使得∠CPD=∠OAB ,且BD/AB=5/8 ,求这时点P 的坐标.
1 / 1
初中数学中考压轴题
2、(2006江苏省宿迁市)设边长为2a的正方形的中心A在直线l 上,它的一组对边垂直于直线l,
1 / 1
初中数学中考压轴题
半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.(1)如图①,当r<a时,根据d及a、r之间关系,将⊙O及正方形的公共点个数填入下表:
所以,当r<a时,⊙O及正方形的公共点的个数可能有
个;
(2)如图②,当r=a时,根据d及a、r之间关系,将⊙O及正方形的公共点个数填入下表:
所以,当r=a时,⊙O及正方形的公共点个数可能有
个;
(3)如图③,当⊙O及正方形有5个公共点时,试说明r=5/4 a;
1 / 1
初中
2018年初中数学突破中考压轴题几何模型之中点模型 教案
中点模型 授课日期 主 题 时 间 中点模型 教学内容 学习过中位线之后,你能否总结一下,目前我们学习了哪些定理或性质与中点有关? 直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你又想到了什么? 1. 直角三角形斜边中线定理: 如图,在Rt?ABC中,?ACB?90?,D为AB中点,则有:CD?AD?BD?C1AB。 2BDA 2. 三线合一: 在?ABC中:(1)AC?BC;(2)CD平分?ACB;(3)AD?BD,(4)CD?AB. “知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出余下两条。 CADB 3. 中位线定理:如图,在?ABC中,若AD?BD,AE?CE,则DE//BC且DE?A1BC。 2DEBC 4. 中线倍长(倍长中线): 如图(左图),在?ABC中,D为BC中点,延长AD到E使DE?AD,联结BE,则有:?ADC≌?EDB。 作用:转移线段和角。 AABMBDEC CD 例1: 如图所示,已知D为BC中点,点A在DE上,且AB?CE,求证:?BAD??CED. EABDC 提示:用倍长中线法
2018年初中数学突破中考压轴题几何模型之中点模型 教案
中点模型 授课日期 主 题 时 间 中点模型 教学内容 学习过中位线之后,你能否总结一下,目前我们学习了哪些定理或性质与中点有关? 直角三角形中点你想到了什么,等腰三角形中点你想到了什么,一般三角形中点你又想到了什么? 1. 直角三角形斜边中线定理: 如图,在Rt?ABC中,?ACB?90?,D为AB中点,则有:CD?AD?BD?C1AB。 2BDA 2. 三线合一: 在?ABC中:(1)AC?BC;(2)CD平分?ACB;(3)AD?BD,(4)CD?AB. “知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出余下两条。 CADB 3. 中位线定理:如图,在?ABC中,若AD?BD,AE?CE,则DE//BC且DE?A1BC。 2DEBC 4. 中线倍长(倍长中线): 如图(左图),在?ABC中,D为BC中点,延长AD到E使DE?AD,联结BE,则有:?ADC≌?EDB。 作用:转移线段和角。 AABMBDEC CD 例1: 如图所示,已知D为BC中点,点A在DE上,且AB?CE,求证:?BAD??CED. EABDC 提示:用倍长中线法
初中中考数学压轴题及答案(精品)
中考数学专题复习——压轴题
1.
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
?b4ac?b2?(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为???2a,4a??)
??2
?2. 如图,在Rt△ABC中,?A?90,AB?6,AC?8,D,E分别是边AB,AC的
中点,点P从点D出发沿DE方向运动,过点P作PQ?BC于Q,过点Q作QR∥BA交
AC于
R,当点Q与点C重合时,点P停止运动.设BQ?x,QR?y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
A D P B H Q
R E C
3在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙
初中中考数学压轴题及答案(精品)
中考数学压轴题及答案(精品) 希望能帮助大家
中考数学专题复习——压轴题
1.
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
b4ac b2
(注:抛物线y=ax+bx+c(a≠0)的顶点坐标为 2a,4a )
2
2. 如图,在Rt△ABC中, A 90,AB 6,AC 8,D,E分别是边AB,AC的
中点,点P从点D出发沿DE方向运动,过点P作PQ BC于Q,过点Q作QR∥BA交
AC于
R,当点Q与点C重合时,点P停止运动.设BQ x,QR y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
H Q
C
3在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作