cox回归模型
“cox回归模型”相关的资料有哪些?“cox回归模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“cox回归模型”相关范文大全或资料大全,欢迎大家分享。
COX回归
§13.3 Cox Regression过程
上面给大家介绍的是两种生存分析方法,但它们只能研究一至两个因素对生存时间的影响,当对生存时间的影响因素有多个时,它们就无能为力了,下面我给大家介绍Cox Regression过程,这是一种专门用于生存时间的多变量分析的统计方法。 Cox Regression过程主要用于:
1、 用以描述多个变量对生存时间的影响。此时可控制一个或几个因素,考察其他因素对生存时间的影响,及各因素之间的交互作用。
例13.3 40名肺癌患者的生存资料(详见胡克震主编的《医学随访统计方法》1993,77页)
生存时间 状态 生活能力评分 年龄 诊断到研究时间 鳞癌 小细胞癌 腺癌 疗法 癌症类别 411 126 118 1 1 1 70 60 70 64 63 65 5 9 11 1 1 1 0 0 0 0 0 0 1 1 1 1.00 1.00 1.00 注:原数据库是用亚变量定义肺癌分类:0,0,0为其它癌;1,0,0为鳞癌;0,1,0为小细胞癌;0,0,1为腺癌。表中的最后一个变量是我加上去的癌症类别,1为鳞癌;2为小细胞癌;3为腺癌;4为其它癌。实践表明结果与用亚变量计算一样。 13.3.1 界面说明
COX回归与logistic回归区别
COX回归与logistic回归区别
logistic回归,与线性回归并成为两大回归,应用范围一点不亚于线性回归,甚至有青出于蓝之势。因为logistic回归太好用了,而且太有实际意义了。解释起来直接就可以说,如果具有某个危险因素,发病风险增加2.3倍,听起来多么地让人通俗易懂。线性回归相比之下其实际意义就弱了。logistic回归与线性回归恰好相反,因变量一定要是分类变量,不可能是连续变量。分类变量既可以是二分类,也可以是多分类,多分类中既可以是有序,也可以是无序。二分类logistic回归有时候根据研究目的又分为条件logistic回归和非条件logistic回归。条件logistic回归用于配对资料的分析,非条件logistic回归用于非配对资料的分析,也就是直接随机抽样的资料。无序多分类logistic回归有时候也成为多项logit模型,有序logistic回归有时也称为累积比数logit模型。
cox回归,cox回归的因变量就有些特殊,因为他的因变量必须同时有2个,一个代表状态,必须是分类变量,一个代表时间,应该是连续变量。只有同时具有这两个变量,才能用cox回归分析。cox回归主要用于生存资料的分析,生存资料至少有两个结局变量,
Logistic回归模型
Logistic回归模型
1 Logistic回归模型的基本知识 1.1 Logistic模型简介
主要应用在研究某些现象发生的概率p,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率
p与那些因素有关。显然作为概率值,一定有0?p?1,因此很难用线性模型描述概率p与自变量的关
系,另外如果p接近两个极端值,此时一般方法难以较好地反映p的微小变化。为此在构建p与自变量关系的模型时,变换一下思路,不直接研究p,而是研究p的一个严格单调函数G(p),并要求G(p)在p接近两端值时对其微小变化很敏感。于是Logit变换被提出来:
Logit(p)?lnp1?p (1)
其中当p从0?1时,Logit(p)从?????,这个变化范围在模型数据处理上带来很大的方便,
解决了上述面临的难题。另外从函数的变形可得如下等价的公式:
Logit(p)?lnp1?p??XT?p?e?TXT1?e? (2)
X 模型(2)的基本要求是,因变量是个二元变量,仅取0或1两个值,而因变量取1的概率P(y?1|X)T就是模型要研究的对象。而X?(1,x1,x2,?,xk),其中xi表示影响y
非参数回归模型与半参数回归模型
第七章 非参数回归模型与半参数回归模型
第一节 非参数回归与权函数法
一、非参数回归概念
前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。
设Y是一维观测随机向量,X是m维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称
g (X) = E (Y|X) (7.1.1)
为Y对X的回归函数。我们证明了这样的回归函数可使误差平方和最小,即
E[Y?E(Y|X)]2?minE[Y?L(X)]2
L (7.1.2)
这里L是关于X的一切函数类。当然,如果限定L是线性函数类,那么g (X)就是线性回归函数了。
细心的读者会在这里立即提出一个问题。既然对拟合函数类L(X)没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Yi,Xi)就可以了是的,对拟合函数类不作任何限制是完全没有意义的。
非参数回归模型与半参数回归模型
1
第七章 非参数回归模型与半参数回归模型
第一节 非参数回归与权函数法
一、非参数回归概念
前面介绍的回归模型,无论是线性回归还是非线性回归,其回归函数形式都是已知的,只是其中参数待定,所以可称为参数回归。参数回归的最大优点是回归结果可以外延,但其缺点也不可忽视,就是回归形式一旦固定,就比较呆板,往往拟合效果较差。另一类回归,非参数回归,则与参数回归正好相反。它的回归函数形式是不确定的,其结果外延困难,但拟合效果却比较好。
设Y 是一维观测随机向量,X 是m 维随机自变量。在第四章我们曾引进过条件期望作回归函数,即称
g (X ) = E (Y |X ) (7.1.1)
为Y 对X 的回归函数。我们证明了这样的回归函数可使误差平方和最小,即
22)]([min )]|([X L Y E X Y E Y E L -=- (7.1.2)
这里L 是关于X 的一切函数类。当然,如果限定L 是线性函数类,那么g (X )就是线性回归函数了。
细心的读者会在这里立即提出一个问题。既然对拟合函数类L (X )没有任何限制,那么可以使误差平方和等于0。实际上,你只要作一条折线(曲面)通过所有观测点(Y i ,X i )就可以了是的,对拟合函数
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。
logistic回归模型讲稿
Logistic回归分析模型
2016-10-24
1各位老师,同学们大家上午好:非常感谢大家抽出宝贵的时间来
参加沙龙,感谢我的导师对沙龙内容及PPT制作过程中的悉心指导,今天和大家一起分享的是在课题中用到的一种统计学分析方法,Logistic回归分析。
2这是CNKI学术搜索给出的近年来Logistic回归分析方法的学术关注度,由此可见,Logistic回归分析方法在当前学术研究中应用比较广泛、流行,关注度比较高,是进行科研数据分析不可缺少的利器。 3下面我将分以下几个部分对回归模型做详细的介绍: 1.Logistic回归的基本概念与原理;2.Logistic回归的应用范畴;3.Logistic回归的类型及实例分析;这是本次沙龙的重点部分。4.应用Logistic回归的注意事项;5.小结与答疑。
4首先来了解一下Logistic回归模型的基本概念与原理:Logistic 回归又称「Logistic 回归分析」,是一种「概率型非线性回归」,主要用于危险因素分析以及预后评估等方面,是目前流行病学和医学中最常用的分析方法之一。近年来已逐渐成为发表高质量 SCI 论文必不可少的重要统计学分析利器。 Logistic 回归本质上
多元线性回归模型
第三章 多元线性回归模型
基本概念
(1)多元线性回归模型; (2)偏回归系数;
(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题
1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性
的过程中,哪些基本假设起了作用?
2.在多元线性回归分析中,t检验与F检验有何不同?在一元线性回归分析中二者是否有等价的作用?
3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?
X1X2X34.在一项调查大学生一学期平均成绩(Y)与每周在学习(与其他各种活动(
X4)、睡觉()、 娱乐()
)所用时间的关系的研究中,建立如下回归模型:
Y??0??1X1??2X2??3X3??4X4?u
如果这些活动所用时间的总和为一周的总小时数168。问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?
5.表3-1给出三变量模型的回归结果。
经典线性回归模型
第二章 经典线性回归模型:双变量线性回归模型 回归分析概述 双变量线性回归模型的参数估计 双变量线性回归模型的假设检验 双变量线性回归模型的预测 实例
引子: 中国旅游业总收入将超过3000亿美 元吗?从2004中国国际旅游交易会上获悉,到2020年,中国旅游 业总收入将超过3000亿美元,相当于国内生产总值的8% 至11%。(资料来源:国际金融报2004年11月25日第二版) ◆是什么决定性的因素能使中国旅游业总收入到2020年达到 3000亿美元? ◆旅游业的发展与这种决定性因素的数量关系究竟是什么?
◆怎样具体测定旅游业发展与这种决定性因素的数量关系?
一、回归与相关(对统计学的回顾)
1. 经济变量间的相互关系◆确定性的函数关系
Y f (X )
◆不确定性的统计关系—相关关系
Y f (X ) ◆没有关系
(ε为随机变量)
2.相关关系◆ 相关关系的描述 相关关系最直观的描述方式——坐标图(散布图)
Y
X
◆相关关系的类型 ● 从涉及的变量数量看简单相关 多重相关(复相关)
● 从变量相关关系的表现形式看线性相关——散布图接近一条直线 非线性相关——散布图接近一条曲线
● 从变量相关关系变化的方向看
多元线性回归模型原理
研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。
计算公式如下:
设随机y与一般变量x1,x2,?xk的线性回归模型为:
y??0??1x1??2x2??kxk??
其中?0,?1,??k是k?1个未知参数,?0称为回归常数,?1,??k称为回归系数;
y称为被解释变量;x1,x2,?xk是k个可以精确可控制的一般变量,称为解释变量。
当p?1时,上式即为一元线性回归模型,k?2时,上式就叫做多元形多元回归模型。?是随机误差,与一元线性回归一样,通常假设
?E(?)?0?2 var(?)???同样,多元线性总体回归方程为y??0??1x1??2x2????kxk
系数?1表示在其他自变量不变的情况下,自变量x1变动到一个单位时引起的因变量y的平均单位。其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。
????x???x?????x ???多元线性样本回归方程为:y01122kk
多元线性回归方程中回归系数的估计同样可以采