同济大学高等数学第六版答案
“同济大学高等数学第六版答案”相关的资料有哪些?“同济大学高等数学第六版答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“同济大学高等数学第六版答案”相关范文大全或资料大全,欢迎大家分享。
高等数学上册课后答案(同济大学第六版)
高数上册答案
高等数学第六版上册课后习题答案
第一章:
习题1 1
1 设A ( 5) (5 ) B [ 10 3) 写出A B A B A\B及A\(A\B)的表达式
解 A B ( 3) (5 )
A B [ 10 5)
A\B ( 10) (5 ) A\(A\B) [ 10 5)
2 设A、B是任意两个集合 证明对偶律 (A B)C AC BC 证明 因为
x (A B)C x A B x A或x B x AC或x BC x AC BC 所以 (A B)C AC BC
3 设映射f X Y A X B X 证明 (1)f(A B) f(A) f(B)
(2)f(A B) f(A) f(B) 证明 因为
y f(A B) x A B 使f(x) y
(因为x A或x B) y f(A)或y f(B)
y f(A) f(B) 所以 f(A B) f(A) f(B) (2)因为
y f(A B) x A B 使f(x) y (因为x A且x B) y f(A)且y f
高等数学同济大学第六版 6-3答案
习题6?3
1? 由实验知道? 弹簧在拉伸过程中? 需要的力F(单位? N)与伸长量s(单位? cm)成正比? 即F?ks (k为比例常数)? 如果把弹簧由原长拉伸6cm? 计算所作的功?
解 将弹簧一端固定于A? 另一端在自由长度时的点O为坐标原点? 建立坐标系? 功元素为dW?ksds? 所求功为 W??ksds?1ks20?18k(牛?厘米)?
0266 2? 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽? 设温度保持不变? 要使蒸汽体积缩小一半? 问需要作多少功? 解 由玻?马定律知?
PV?k?10?(?102?80)?80000??
设蒸气在圆柱体内变化时底面积不变? 高度减小x厘米时压强 为P(x)牛/厘米2? 则
P(x)?[(?102)(80?x)]?80000?? P(x)?800?
80?? 功元素为dW?(??102)P(x)dx? 所求功为 W??40408001dx?800?ln2(J)? (??10)?dx?80000??080??80??20 3? (1)证明? 把质量为m
高等数学同济大学第六版 6-3答案
习题6?3
1? 由实验知道? 弹簧在拉伸过程中? 需要的力F(单位? N)与伸长量s(单位? cm)成正比? 即F?ks (k为比例常数)? 如果把弹簧由原长拉伸6cm? 计算所作的功?
解 将弹簧一端固定于A? 另一端在自由长度时的点O为坐标原点? 建立坐标系? 功元素为dW?ksds? 所求功为 W??ksds?1ks20?18k(牛?厘米)?
0266 2? 直径为20cm、高80cm的圆柱体内充满压强为10N/cm2的蒸汽? 设温度保持不变? 要使蒸汽体积缩小一半? 问需要作多少功? 解 由玻?马定律知?
PV?k?10?(?102?80)?80000??
设蒸气在圆柱体内变化时底面积不变? 高度减小x厘米时压强 为P(x)牛/厘米2? 则
P(x)?[(?102)(80?x)]?80000?? P(x)?800?
80?? 功元素为dW?(??102)P(x)dx? 所求功为 W??40408001dx?800?ln2(J)? (??10)?dx?80000??080??80??20 3? (1)证明? 把质量为m
同济大学第六版高等数学上册课后答案全集
高等数学第六版上册课后习题答案
第一章
习题1-1
1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式.
解 A ?B =(-∞, 3)?(5, +∞),
A ?
B =[-10, -5),
A \
B =(-∞, -10)?(5, +∞),
A \(A \
B )=[-10, -5).
2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C .
证明 因为
x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C .
3. 设映射f : X →Y , A ?X , B ?X . 证明
(1)f (A ?B )=f (A )?f (B );
(2)f (A ?B )?f (A )?f (B ).
证明 因为
y ∈f (A ?B )??x ∈A ?B , 使f (x )=y
?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )
? y ∈f (A )?f (B ),
所以 f (A ?B )=
12-3高等数学同济大学第六版本
习题12?3 1? 求下列齐次方程的通解? (1)xy??y?y2?x2?0? 解 原方程变为 令u?dyyy??()2?1? dxxxy? 则原方程化为 x u?xdu?u?u2?1? 即1du?1dx? xdxu2?1两边积分得 ln(u?u2?1)?lnx?lnC? 即u?u2?1?Cx? 将u?y代入上式得原方程的通解 xyy?()2?1?Cx? 即y?y2?x2?Cx2? xx dyy?yln? dxxdyyy 解 原方程变为?ln? dxxxy 令u?? 则原方程化为 x1du?1dx? u?xdu?ulnu? 即u(lnu?1)xdx两边积分得 ln(ln u?1)?ln x?ln C? 即u?eCx?1? y将u?代入上式得原方程的通解 x y?xeCx?1? (3)(x2?y2)dx?xydy?0? y 解 这是齐次方程? 令u?? 即y?xu? 则原方程化为 x (x2?x2u2)dx?x2u(udx?xdu)?0? 即udu?1dx?
2-2高等数学同济大学第六版本
习题 2?2 1? 推导余切函数及余割函数的导数公式? (cot x)???csc2x ? (csc x)???csc xcot x ? cosx?cosx 解 (cotx)??(cosx)???sinx?sinx?sinxsin2x22sinx?cosx??1??csc2x? ??22sinxsinxs??csc (csxc)??(1)???co2xx?coxt? sinxsinx 2? 求下列函数的导数? 7?2?12? (1)y?4?x5x4x (2) y?5x3?2x?3ex ? (3) y?2tan x?sec x?1? (4) y?sin x?cos x ? (5) y?x2ln x ? (6) y?3excos x ? (7)y?lnx? xxe (8)y?2?ln3? x (9) y?x2ln x cos x ? (10)s?1?sint? 1?cost7?2?12)??(4x?5?7x?4?2x?1?12)? 解 (1)y??(4?x5x4x28?2?
12-1高等数学同济大学第六版本
习题12?1 1? 试说出下列各微分方程的阶数? (1)x(y?)2?2yy??x?0? 解 一阶? (2)x2y??xy??y?0? 解 一阶? (3)xy????2y??x2y?0? 解 三阶? (4)(7x?6y)dx?(x?y)dy?0? 解 一阶? d2QdQQ??0? (5)L2?RdtCdt 解 二阶? d????sin2?? d? 解 一阶? (6) 2? 指出下列各题中的函数是否为所给微分方程的解? (1)xy??2y? y?5x2? 解 y??10x? 因为xy??10x2?2(5x2)?2y? 所以y?5x2是所给微分方程的解? (2)y??y?0? y?3sin x?4cos x? 解 y??3cos x?4sin x? 因为y??y?3cos x?4sin x?3sin x?4cos x?7sin x?cos x?0? 所以y?3sin x?4cos x不是所给微分方程的解? (3)y???2y??y?0? y?x2ex?
总习题二高等数学同济大学第六版本
总 习 题 二 1? 在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内? (1)f(x)在点x0可导是f(x)在点x0连续的____________条件? f(x)在点x0连续是f(x)在点x0可导的____________条件? (2) f(x)在点x0的左导数f??(x0)及右导数f??(x0)都存在且相等是f(x)在点x0可导的_______条件? (3) f(x)在点x0可导是f(x)在点x0可微的____________条件? 解 (1)充分? 必要? (2) 充分必要? (3) 充分必要? 2? 选择下述题中给出的四个结论中一个正确的结论? 设f(x)在x?a的某个邻域内有定义? 则f(x)在x?a处可导的一个充分条件是( )? f(a?2h)?f(a?h) (A)limh[f(a?1)?f(a)]存在? (B)lim存在? h?0h???hhf(a?h)?f(a?h)f(a)?f(a?h) (C)lim存在? (D)lim存在? h?0h?02hh 解 正确结论是D? f(a)?
2-2高等数学同济大学第六版本
习题 2?2 1? 推导余切函数及余割函数的导数公式? (cot x)???csc2x ? (csc x)???csc xcot x ? cosx?cosx 解 (cotx)??(cosx)???sinx?sinx?sinxsin2x22sinx?cosx??1??csc2x? ??22sinxsinxs??csc (csxc)??(1)???co2xx?coxt? sinxsinx 2? 求下列函数的导数? 7?2?12? (1)y?4?x5x4x (2) y?5x3?2x?3ex ? (3) y?2tan x?sec x?1? (4) y?sin x?cos x ? (5) y?x2ln x ? (6) y?3excos x ? (7)y?lnx? xxe (8)y?2?ln3? x (9) y?x2ln x cos x ? (10)s?1?sint? 1?cost7?2?12)??(4x?5?7x?4?2x?1?12)? 解 (1)y??(4?x5x4x28?2?
同济大学第六版高等数学上册课后答案全集word版本
高等数学第六版上册课后习题答案
高等数学第六版上册课后习题答案
第一章
习题1?1
1? 设A?(??? ?5)?(5? ??)? B?[?10? 3)? 写出A?B? A?B? A\\B及A\\(A\\B)的表达式?
解 A?B?(??? 3)?(5? ??)?
A?B?[?10? ?5)?
A\\B?(??? ?10)?(5? ??)? A\\(A\\B)?[?10? ?5)?
2? 设A、B是任意两个集合? 证明对偶律? (A?B)C?AC ?BC ? 证明 因为
x?(A?B)C?x?A?B? x?A或x?B? x?AC或x?BC ? x?AC ?BC? 所以 (A?B)C?AC ?BC ?
3? 设映射f ? X ?Y? A?X? B?X ? 证明 (1)f(A?B)?f(A)?f(B)?
(2)f(A?B)?f(A)?f(B)? 证明 因为
y?f(A?B)??x?A?B? 使f(x)?y