硼扩散工艺

“硼扩散工艺”相关的资料有哪些?“硼扩散工艺”相关的范文有哪些?怎么写?下面是小编为您精心整理的“硼扩散工艺”相关范文大全或资料大全,欢迎大家分享。

扩散工艺知识

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

第三章 扩散工艺

在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散。这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN结。

第一节 扩散原理

扩散是一种普通的自然现象,有浓度梯度就有扩散。扩散运动是微观粒子原子或分子热运动的统计结果。在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。

一.扩散定义 在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。

二.扩散机构

杂质向半导体扩散主要以两种形式进行: 1.替位式扩散

一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位”。这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。硼(B)、磷(P)、砷(As)等属此种扩散。

2.间隙式扩

扩散炉工艺文件

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

扩散炉工艺报告

一、太阳能电池板原理介绍:

太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。晶体硅太阳能电池的制作过程: “硅”是我们这个星球上储藏最丰量的材料之一。

二、硅太阳能电池工作原理与结构:

太阳能电池发电的原理主要是半导体的光电效应,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。

当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P型半导体。 同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N型半导体。

P型半导体中含有较多的空穴,而N型半导体中含有较多的电子,这样,当

扩散 PECVD工艺调试说明

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

设备工艺调试(扩散 PE)

扩散调试(针对喷淋、串级控制、压力补偿设备)

工艺调试前的准备工作

1 压力补偿功能是否正常运行 压力平衡系统调试

压力平衡主要由压力传感器、压力控制器、流量计组成。 压力传感器调试

压力传感器有两个气体压力检测口

一个与大气相通<1>一个与反应管相通<2><1>直接空开、<2>通过PFA管与热偶管相连。 注意不要将两个接口接反,检验方法:可以用口对准其中一个吹气可以发现控制器检测值增大否则可能接反了。 2 流量计调试

同时按“ENT”和“?”进入参数设定模式。(3秒以上) C03 值选为1

流量计出气口要接到石英连接器上,即补气口(将原来排废管上的补气口堵上)。 3 压力控制器

常按“set”ATU设为1时自整定,在设备连接好时进行补气时,将该值设定成1进行自整定(类似温度控制PID整定)

OLH为限幅输出,一般设定为20%,(即在补气时流量计瞬时值不要超过10L/min) 如果压力控制器变化太快可以将延时设置成五(DF)

在STOP模式下边按SET边按R/S键4秒以上,进行工程技术模式: F00 MODE=128

F21 INP=35 PGDp=0 PGSH=1000 SLH=1000 F60 CMP

扩散炉工艺文件

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

扩散炉工艺报告

一、太阳能电池板原理介绍:

太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。晶体硅太阳能电池的制作过程: “硅”是我们这个星球上储藏最丰量的材料之一。

二、硅太阳能电池工作原理与结构:

太阳能电池发电的原理主要是半导体的光电效应,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。

当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P型半导体。 同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N型半导体。

P型半导体中含有较多的空穴,而N型半导体中含有较多的电子,这样,当

扩散炉工艺文件

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

扩散炉工艺报告

一、太阳能电池板原理介绍:

太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。晶体硅太阳能电池的制作过程: “硅”是我们这个星球上储藏最丰量的材料之一。

二、硅太阳能电池工作原理与结构:

太阳能电池发电的原理主要是半导体的光电效应,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。

当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P型半导体。 同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N型半导体。

P型半导体中含有较多的空穴,而N型半导体中含有较多的电子,这样,当

氧化硼

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

在商品化玻璃生产过程中,氧化硼主要起助熔的作用。当其他性质的要求限定了碱的用量后,往往添加氧化硼来降低熔化、成型和液线温度。与氧化钠和氧化钾不同,氧化硼不仅具有助熔的作用,同时还有助于形成具有高化学耐久性、低热膨胀和低导电性的玻璃制品。

制备

虽然硼在空气和氧气中燃烧都可以直接产生三氧化二硼,但三氧化二硼主要是通过硼酸脱水制取的。在200-400 °C对硼酸真空脱水,可以得到非常干燥的三氧化二硼。如果在大气中脱水,即使加热到1000 °C,也很难去除最后剩下的痕量水。

硼酸则可通过硼砂和硫酸共热反应制取。

现在已广泛使用的玻璃制品主要有:隔声、绝热的玻璃棉、增强 塑料用的玻璃纤维,钢和各种金属基片上的搪瓷,陶瓷釉(例如面砖和餐具上的彩釉),光学玻璃以及各种硼硅酸盐技术玻璃。硼硅酸盐技术玻璃的种类目前很多, 现已成熟使用的有:照明器材,实验室器皿,炊具,医疗器具和液晶显示屏。

1) 在Na2O-SiO2熔体中加入B2O3粘度的变化出现如下曲线关系:

对此现象解释如下:

最初B2O3加入量为零时,由[SiO4]四面体组成网络,由于Na2O拆网使粘度很低;随着B2O3加入量的增加,B3+以四配位(即[BO4])补网,使得熔体中[BO4]的比例不

气体扩散模型

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

放射气体模型的预估模型

摘要

本文是以日本福岛核电站遭遇自然灾害发生核泄漏的背景而提出的。且结合了高斯烟羽模型、线性拟合,以及微分方程模型,运用MATLAB软件,分析泄漏源强度、风速、大气稳定度参数等因素对放射性气体扩散的影响,预测了放射性气体浓度在不同时间,不同地区的浓度变化,并且本文模型中数据可以根据不同的实际情况而加以改变,因而是本文的应用范围大大增加,可以适用于具有较强的应用型。

对于问题一,讨论在无风的情况下,放射性气体以s m/s的匀速在大气中向四周扩散。本问中由于不考虑风力的影响,且扩散出来的气体匀速向四周散开,这样经过任意时刻t,扩散的气体围成一个半径为st的球,且距球心位置不同的地方浓度值不同。采用列数列的表现方法,设定相同时间段t,把条件进行整理,并经过简单计算得出每段时间所预测得到的扩散距离r和浓度C。利用MATLAB软件对数据进行线性拟合,采用微分方程模型得到核电站周边放射性气体在不同地区,不同时间段的浓度变化,得出随着离泄漏源距离的延伸,最后放射性物质的浓度越来越小,趋近于零,即当x趋向无穷时,C(x,y,z,t)趋向于零;当时间趋向于无穷时,C(x,y,z,t)也趋于无穷。

对于问题二,要探究风速对放射性物质

碳硼烷

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

碳硼烷

摘要:

自20世纪60年代以来,碳硼烷化学得到了空前发展。碳硼烷衍生物具有独特的结构和良好的热稳定性等特点,已经应用于众多领域,如生物医学、光学材料、超分子化学、催化材料、离子液体以及离子选择性电极等。 关键词:碳硼烷;合成;结构;反应机理

Abstract:

Since the 1960s,the chemistry of closo-C2B10H12 carborane has witnessed rapid development.The icosahedral closo-C2B10H12 carboranes and their derivatives have attracted considerable attention due to their unique molecular skeleton,excellent thermal stability and especially the potential applications in many fields,including,e.g.biomedical science,optical materials,macromolecules,cataly

碳化硼特性

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

碳化硼特性

B4C具有高熔点、高硬度、低密度等优良性能,并具有良好的中子吸收能力和抗化学侵蚀能力,因而广泛应用于耐火材料、工程陶瓷、核工业、宇航等领域。化学计量分子式为

B4C,碳化硼存在许多同分异构体,含碳量从8%-20%,最稳定的碳化硼结构是具有斜方六面体结构的B13C2 、B13C3、B4C和其它接近于B13C3的相。碳化硼斜方六面体结构中包括12个二十面的原子团簇,这些原子团簇通过共价键相互连接,并在斜方六面体的对角线上有一个三原子链。多硼的十二面体结构位于斜方六面体的顶点。硼原子和碳原子可以在二十面体和原子链上互相替代 ,这也是碳化硼具有如此多的同分异构体的主要原因。正因为碳化硼的特殊结构,使之有很多优 良的物理、机械性能。

碳化硼最重要的性能在于其超常的硬度(莫氏硬度为9.3,显微硬度为55GPa-67GPa),是最理想的高温耐磨材料;碳化硼密度很小,是陶瓷材料中最轻的,可用于航天航空领域;碳化硼的中子吸收能力很强,相对于纯元素B和Cd来说,造价低、耐腐蚀性好、热稳定性好,广泛用于核工业,碳化硼中子吸收能力还可以通过添加B元素而进一步改善;碳化硼的化学性能优良,在常温下不与酸、碱和大多数无机化合物反应,仅在氢氟酸一硫酸、氢氟酸一

气体扩散模型

标签:文库时间:2024-10-02
【bwwdw.com - 博文网】

放射气体模型的预估模型

摘要

本文是以日本福岛核电站遭遇自然灾害发生核泄漏的背景而提出的。且结合了高斯烟羽模型、线性拟合,以及微分方程模型,运用MATLAB软件,分析泄漏源强度、风速、大气稳定度参数等因素对放射性气体扩散的影响,预测了放射性气体浓度在不同时间,不同地区的浓度变化,并且本文模型中数据可以根据不同的实际情况而加以改变,因而是本文的应用范围大大增加,可以适用于具有较强的应用型。

对于问题一,讨论在无风的情况下,放射性气体以s m/s的匀速在大气中向四周扩散。本问中由于不考虑风力的影响,且扩散出来的气体匀速向四周散开,这样经过任意时刻t,扩散的气体围成一个半径为st的球,且距球心位置不同的地方浓度值不同。采用列数列的表现方法,设定相同时间段t,把条件进行整理,并经过简单计算得出每段时间所预测得到的扩散距离r和浓度C。利用MATLAB软件对数据进行线性拟合,采用微分方程模型得到核电站周边放射性气体在不同地区,不同时间段的浓度变化,得出随着离泄漏源距离的延伸,最后放射性物质的浓度越来越小,趋近于零,即当x趋向无穷时,C(x,y,z,t)趋向于零;当时间趋向于无穷时,C(x,y,z,t)也趋于无穷。

对于问题二,要探究风速对放射性物质