线性代数期末试题及答案
“线性代数期末试题及答案”相关的资料有哪些?“线性代数期末试题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性代数期末试题及答案”相关范文大全或资料大全,欢迎大家分享。
线性代数试题及答案
一、单项选择题(共20题)
1.λ≠( )时,方程组A.1 B.2 C.3 D.4
【正确答案】B
【您的答案】B 【答案正确】
只有零解。
2.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为-1,1,2,D的值为( ) A.-3 B.-7 C.3 D.7
【正确答案】A
【您的答案】A 【答案正确】
3.设某3阶行列式︱A︱的第二行元素分别为-1,2,3,对应的余子式分别为-3,-2,1,则此行列式︱A︱的值为( ). A.3 B.15 C.-10
D.8
【正确答案】C
【您的答案】C 【答案正确】
4.行列式D如果按照第n列展开是( )。 A.a1nA1n+a2nA2n+...+annAnn B.a11A11+a21A21+...+an1An1 C.a11A11+a12A21+...+a1nAn1 D.a11A11+a21A12+...+an1A1n 【正确答案】A
【您的答案】A 【答案正确】
5.行列式中元素g的代数余子式的值为( )。
A.bcf-bde B.bde-bcf C.acf-ade D.ade-acf
【正确答案】B
【您的答案】B 【答案正确】
6.行列式A.abcd B
线性代数试题及答案
(试卷一)
一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若
a11a21a12a22a11?1,则a213a123a22600? 103. 已知n阶矩阵A、其中E为n阶单位矩阵,则B和C满足ABC?E,
B?1?CA。
4. 若A为m?n矩阵,则非齐次线性方程组AX?b有唯一解的充分要条件是 _________
5. 设A为8?6的矩阵,已知它的秩为4,则以A为系数矩阵的齐次线性方程组的解空间维数为__2___________。 6. 设A为三阶可逆阵,A?1?100?????210?,则A*? ?321???7.若A为m?n矩阵,则齐次线性方程组Ax?0有非零解的充分必要条件是
12345304128.已知五阶行列式D?11111,则A41?A42?A43?A44?A45? 11023543219. 向量??(?2,1,0,2)T的模(范数)______________。 10.若???1k1?T与???1?21?T正交,则k?
二、选择题(本题总计10分,每小题2分)
- 1 -
1. 向量组?1,?2,?,?r
线性代数试题及答案3详解
线性代数试题及答案3详解
线性代数习题和答案
第一部分选择题(共28分)
一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有
一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。
1.设行列式a a
a a
1112
2122
=m,
a a
a a
1311
2321
=n,则行列式
a a a
a a a
111213
212223
+
+
等于( D )
A. m+n
B. -(m+n)
C. n-m
D. m-n
2.设矩阵A=
100
020
003
?
?
?
?
?
?
?
,则A-1等于( B )
A.
1
3
00
1
2
001
?
?
?
?
?
?
?
?
?
?
B
100
1
2
00
1
3
?
?
?
?
?
?
?
?
??
C
?
?
?
?
?
?
?
?
?
2
1
1
3
1
D
1
2
00
1
3
001
?
?
?
?
?
?
?
?
?
?
3.设矩阵A=
312
101
214
-
-
-
?
?
?
?
?
?
?
,A*是A的伴随矩阵,则A *中位于(1,2)的元素是( B )
A. –6
B. 6
C. 2
D. –2
4.设A是方阵,如有矩阵关系式AB=AC,则必有( D )
A. A =0
B. B≠C时A=0
C. A≠0时B=C
D. |A|≠0时B=C
5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于( C )
A. 1
B. 2
C. 3
线性代数试题及答案3详解
1
线性代数习题和答案
第一部分选择题(共28分)
14小题,每小题2分,共28分)在每小题列出的四个选项中只有 请将其代码填在题后的括号内。
A. 如存在数入和向量a 使A a =入a,则a 是A 的属于特征值 入的特征向量
B. 如存在数入和非零向量a,使(入E - A ) a =0,则入是A 的特征值
C. A 的2个不同的特征值可以有同一个特征向量
D. 如入1,入2,入3是A 的3个互不相同的特征值,
a 1, a 2, a 3依次是A 的属于入1,入2,
入3的特征向量,贝y a 1, a 2, a 3有可能线性相关
A. m+n a 11 a 12
=m, a
13
a
11
a 21 a 22
a
23 a
21 1.设行列式 =n ,
C. n- m
0 ' 0
3
丿
B. P 0 -(m+n) 0 2 0
则行列式
D. m- 2.设矩阵A = a
11 a
21
a
12 a 22 +313
+a
23
等于(
<1 0 0
f
冷
i L 0 0
3
1
0 0
1 [
12
1
1
3
[ J 1
I 0 2 0 B 0 2 0
C 0 1 0
D I 0
3 0 0 0 1 LI 0
1
0 0 1 1
0 0 1
丿
3丿 K
2
丿 1
丿
A. 、单
线性代数期末考试及答案
西 南 大 学 课 程 考 核
西南大学 数学与统计学院 《 线性代数 》课程试题 〖B〗卷参考答案和评分标准 2014~2015学年 第2学期 考试时间 120分钟 ————————————————————————————————————————————————————— 期末 考试 本科 考核方式 闭卷笔试 学生类别 线性代数Ⅱ 人数 2010 级 十 学号 适用专业或科类 题号 得分 签名 一 年级 七 密二 三 四 五 六 八 九 合计 姓名 阅卷须知:阅卷用红色墨水笔书写,得分用阿拉伯数字写在每小题题号前,用正分表示,不得分则在题号前写0;大题得分登录在对应的分数框内;统一命题的课程应集体阅卷,流水作业;阅卷后要进行复核,发现漏评、漏记或总分统计错误应及时更正;对评定分数或统分记录进行修改时,修改人必须签名。 班 封 特别提醒:学生必须遵守课程考核纪律,违规者将受到严肃处理。 一、填空题(共5题,4分/题,共20分) 1、已知三阶方阵A的行列式A?TT 年级 1,则(3A)?1?4A*? -3 。 3TT2、设向量组?1?(1,
线性代数期末附答案(4)
《线性代数》模拟试题(四)
一、选择题(每小题4分,共24分)
1. 设A,B,C均为n阶方阵,若由AB?AC能推出B?C,则A应满足下列条件中的( ). (A)A?0 (B)A?0 (C)A?0 (D)A?0 2. 设A,B均为n阶矩阵,k为正整数,下列各式中不正确的是( ).
TT(A)A?B?A?B (B)A?B?A?B
(C)(AB)k?AB (D)AB?AB
kk?10x111?1?13. 已知A?,则A中的一次项系数是( ).
1?11?11?1?11 (A) 4 (B)1 (C) ?4 (D)?1
?a11?4. 设A?(aij)3?3,B??a31?a?21a12a31a223a11?a13??100??103??????3a31?a33?,P1??001?,P2??010?, 那么( ).
?001??010?3a21?a23?????? (A)AP1P2?B (B)P2P1A?B
线性代数B期末试卷及答案
2008 – 2009学年第二学期《线性代数B》试卷
2009年6月22日 一 得 分 一、填空题(共6小题,每小题 3 分,满分18分) 二 三 四 五 六 总分 ?10?01?1. 设A???00??0?300100?0??,则A= .0??8?
2. A为n阶方阵,AAT=E且A?0,则A?E? . ?12?2??, B为三阶非零矩阵,4t33.设方阵A??且AB=O,则t? . ????3?11??4. 设向量组?1,?2,?,?m线性无关,向量?不能由它们线性表示,则向量组?1,?2,?,?m,? 的秩为 .
5.设A为实对称阵,且|A|≠0,则二次型f =x TA x化为f =yTA-1 y的线性变换是x= .
1,a2??1,0,?1?,a3??1,0,1?;6.设R的两组基为a1??1,1,?3T???1?(1,2,1,)T,?2??2,3,4?,?3??3,4,3?,则由基a1,a2,a3到基?1,?2,?3
的过渡矩阵为
线性代数B期末试卷及答案
2008 – 2009学年第二学期《线性代数B》试卷
2009年6月22日 一 得 分 一、填空题(共6小题,每小题 3 分,满分18分) 二 三 四 五 六 总分 ?10?01?1. 设A???00??0?300100?0??,则A= .0??8?
2. A为n阶方阵,AAT=E且A?0,则A?E? . ?12?2??, B为三阶非零矩阵,4t33.设方阵A??且AB=O,则t? . ????3?11??4. 设向量组?1,?2,?,?m线性无关,向量?不能由它们线性表示,则向量组?1,?2,?,?m,? 的秩为 .
5.设A为实对称阵,且|A|≠0,则二次型f =x TA x化为f =yTA-1 y的线性变换是x= .
1,a2??1,0,?1?,a3??1,0,1?;6.设R的两组基为a1??1,1,?3T???1?(1,2,1,)T,?2??2,3,4?,?3??3,4,3?,则由基a1,a2,a3到基?1,?2,?3
的过渡矩阵为
线性代数习题及答案
高数选讲线性代数部分作业
1.已知n阶方阵满足A2+2A-3I=O,则(A+4I)-1为 .
2.设n阶方阵满足Am?I,m为正整数,又矩阵B?(Aij)n?n,其中Aij为行列式|A|中元素aij 的代数余子式,则Bm为( )。
3.已知n阶方阵
?2??0A??0????0?22?2??11?1?01?1?,则A中所有元素的代数余子式之和为( )。
??????00?1??
4.设Ax?[?1,?2,?3,?4]x?b有通解k[1,-2,1,3]T+[2,1,1,4]T,其中k是任意常数,则方程组Bx?[?5,?2,?3,?4]x?b必有一个特解是( )
5.设A与B是n阶方阵,齐次线性方程组Ax=0与Bx=0有相同的基础解系?1,?2,?3,则在下列方程组中以?1,?2,?3为基础解系的是( ) (A) (A?B)x?0 (B) ABx?0 (C) BAx?0 (D) ??B??x?0
?A???6.设A、B为四阶方阵,r(A)?4,r(B)?3,则r[AB]为( )
(A)1. (B)2.
《线性代数》样卷A及答案
《线性代数》样卷A
一、选择题(本题共10小题,每小题2分,共20分)
(从下列备选答案中选择一个正确答案) 1、排 列134782695的逆序数为( ) (A)9 (B)10 (C)11 (D)12 2、已知D?0?10则D>0的充要条件是( )
4aaa11(A)a<2 (B)a>-2 (C)a?2 (D) a?2
3、设A、B为n阶可逆矩阵,??0,则下列命题不正确的是( ) (A)(A?1)?1?A (B)(?A)?1??A?1 (C)(AB)?1?B?1A?1 (D)(AT)?1?(A?1)T
01??00?相当于对A施行初等变换为( ) 10???0?001?4、以初等矩阵?010?左乘矩阵A??1????0?100????(A)r2?r3 (B)C2?C3 (C)r1?r3 (D)C1?C3 5、齐次线性方程组Ax?0有非零解的充分必要条件是( )
(A)A的行向量组线性无关; (B)A的列向量组线性无关; (C)A的行向量组线性相关; (D)A的列向量组线性相关; 6、已
2>