反比例函数实际应用教学设计
“反比例函数实际应用教学设计”相关的资料有哪些?“反比例函数实际应用教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“反比例函数实际应用教学设计”相关范文大全或资料大全,欢迎大家分享。
5、3反比例函数实际应用过关题
第 1 页 共 6 页
5、3反比例函数实际应用过关题
一、解答题
1、已知正比例函数y=ax的图象与反比例函数y=
点的坐标。
2、一次函数y=kx+b的图象与反比例函数y=-的横坐标分别是方程x
3、如图,Rt△ABO的顶点A是双曲线AB⊥x轴于B且S△ABO=
26?a的图象有一个交点的横坐标是1,求它们两个交x2x的图象交于A,B两点,且点A的横坐标与点B
?x?2?0的两个根,求一次函数的解析式。
y?kx与直线
y??x?(k?1)在第二象限的交点,
32
y A x B O C (1)求这两个函数的解析式
(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积。
4、为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量
y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟
燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题: (1)求药物燃烧时
y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.
(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?
5、3反比例函数实际应用过关题
第 1 页 共 6 页
5、3反比例函数实际应用过关题
一、解答题
1、已知正比例函数y=ax的图象与反比例函数y=
点的坐标。
2、一次函数y=kx+b的图象与反比例函数y=-的横坐标分别是方程x
3、如图,Rt△ABO的顶点A是双曲线AB⊥x轴于B且S△ABO=
26?a的图象有一个交点的横坐标是1,求它们两个交x2x的图象交于A,B两点,且点A的横坐标与点B
?x?2?0的两个根,求一次函数的解析式。
y?kx与直线
y??x?(k?1)在第二象限的交点,
32
y A x B O C (1)求这两个函数的解析式
(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积。
4、为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量
y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟
燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题: (1)求药物燃烧时
y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.
(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室?
反比例函数的应用
篇一:反比例函数的应用
海豚教育个性化简案
海豚教育个性化教案(真题演练)
海豚教育个性化教案
篇二:反比例函数的应用练习题
反比例函 数的 应用1 . ( 2013 ?安 顺 ) 若 y = ( a +1) x A. 1 B . -la2?2是反比例函数,则 a 的取值为( C. ±l) D. 任 意 实 数2 . ( 2012 ?长 沙 ) 某 闭 合 电 路 中 , 电 源 的 电 压 为 定 值 , 电 流 I ( A ) 与 电 阻 R ( Ω ) 成反比例.图表示的是该电路中电流 I 与电阻 R 之间函数关系的图象,则用电阻 R 表示电流 I 的函数解析式为( )A. I=B. I=C. I=D. I= ?2366RRm2?2m?9RR)4 . ( 2012 ?本 溪 二 模 ) 函 数 y = ( m +2) x A . m=4 或 m=-2 B . m=4是反比例函数,则 m 的值是( C . m=-2 D . m=-18. ( 2009 ?鄂 尔 多 斯 )某 闭 合 电 路 中 ,电 源 的 电 压 为 定 值 ,电 流 I( A )与 电 阻 R( Ω ) 成反比例.如图所示的是该电路中电流 I 与电阻 R 之间的 函数关系的图象
反比例函数
反比例函数
各位老师,你们好:
我今天说课的内容是苏科版八年级下册第九章第一节反比例函数。
一、 分析教材
(一)教材地位:
本小节属于《全日制义务教育数学课程标准实验稿》中“数与代数”领域,是我们在
学习了平面直角坐标系和一次函数的基础上,再一次进入函数领域,通过本小节的学习,让学生感受到函数是反映现实生活的一种有效模型,同时,本小节的学习内容,直接关系到后续内容的学习,也可以说是后续内容的基础。
(二)教学重点:
1、了解并掌握反比例函数的概念;
2、能根据问题中的已知条件确定反比例函数解析式;
3、能判断一个函数是否为反比例函数及比例系数;
4、培养学生的观察、比较、概括能力。
(三)教学重学:
1、了解并掌握反比例函数的概念
2、能根据已知条件确定反比例函数解析式
(四)教学难点:
1、解并掌握反比例函数的概念
2、能根据已知条件确定反比例函数解析式
二、分析教法与学法:
(一)教法:
由于学生已学过正比例关系,一次函数,正比例函数等概念,由于打算采用新旧知识相联系的方法,让学生通过比较发现从而掌握新知识
(二)学法:
通过观察、比较、发现、概括的方法来学习新知识。
三、分析
反比例函数
反比例函数
各位老师,你们好:
我今天说课的内容是苏科版八年级下册第九章第一节反比例函数。
一、 分析教材
(一)教材地位:
本小节属于《全日制义务教育数学课程标准实验稿》中“数与代数”领域,是我们在
学习了平面直角坐标系和一次函数的基础上,再一次进入函数领域,通过本小节的学习,让学生感受到函数是反映现实生活的一种有效模型,同时,本小节的学习内容,直接关系到后续内容的学习,也可以说是后续内容的基础。
(二)教学重点:
1、了解并掌握反比例函数的概念;
2、能根据问题中的已知条件确定反比例函数解析式;
3、能判断一个函数是否为反比例函数及比例系数;
4、培养学生的观察、比较、概括能力。
(三)教学重学:
1、了解并掌握反比例函数的概念
2、能根据已知条件确定反比例函数解析式
(四)教学难点:
1、解并掌握反比例函数的概念
2、能根据已知条件确定反比例函数解析式
二、分析教法与学法:
(一)教法:
由于学生已学过正比例关系,一次函数,正比例函数等概念,由于打算采用新旧知识相联系的方法,让学生通过比较发现从而掌握新知识
(二)学法:
通过观察、比较、发现、概括的方法来学习新知识。
三、分析
反比例函数的综合应用
反比例函数的综合应用
1、已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4. (1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.
2.如图,在平面直角坐标系xOy中,菱形OABC的顶点C在x轴上,顶点A落在反比例
函数y?m(m?0)的图象上.一次函数y?kx?b(k?0)的图象与该反比例函数的图象交于A、x. D两点,与x轴交于点E.已知AO?5,S菱形OABC?20,点D的坐标为(?4,n)
(1)求该反比例函数和一次函数的解析式;(2)连接CA、CD,求△ACD的面积.
1
3、已知反比例函数y?k的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积 xk
的图象上另一点C(n,一2). x
为2.若直线y?ax?b 经过点A,并且经过反比例函数y?
⑴求直线y?ax?b的解析式; ⑵设直线y?ax?b与x轴交于点M,求AM的长;(3)求x使
k?ax?b x
4、如图,在平面直角坐标系xOy中,反比
反比例函数的综合应用
反比例函数的综合应用
1、已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S△AOB=4. (1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.
2.如图,在平面直角坐标系xOy中,菱形OABC的顶点C在x轴上,顶点A落在反比例
函数y?m(m?0)的图象上.一次函数y?kx?b(k?0)的图象与该反比例函数的图象交于A、x. D两点,与x轴交于点E.已知AO?5,S菱形OABC?20,点D的坐标为(?4,n)
(1)求该反比例函数和一次函数的解析式;(2)连接CA、CD,求△ACD的面积.
1
3、已知反比例函数y?k的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积 xk
的图象上另一点C(n,一2). x
为2.若直线y?ax?b 经过点A,并且经过反比例函数y?
⑴求直线y?ax?b的解析式; ⑵设直线y?ax?b与x轴交于点M,求AM的长;(3)求x使
k?ax?b x
4、如图,在平面直角坐标系xOy中,反比
反比例函数教案
目录
第一篇:反比例函数教案及教学反思第二篇:1 7.2实际问题与反比例函数(2)教案第三篇:反比例函数的图像与性质教案第四篇:《反比例函数的应用》教学设计第五篇:反比例函数复习课教学反思更多相关范文正文
第一篇:反比例函数教案及教学反思
课题 1.1反比例函数(1)
主备人
陈春莲
知识与技能目标:①了解反比例函数的意义,理解反比例函数的概念;
②会求简单实际问题中的反比例函数解析式,反比例函数教案及教学反思。
程序性目标:①从现实情景和学生的已有知识经验出发,讨论两个变量之间的相互关系,从而加深对函数概念的理解;
②使学生经历抽象反比例函数概念的过程中感悟反比例函数的概念。
情感与价值观目标:
①通过反比例函数概念的教学,使学生亲身经历知识的发生、发展的过程,培养学生的自主、合作的意识以及确立良好的认知观;
②学生通过对反比例函数的简单应用,使其初步形成数学的建模意识和能力。
教学重点
反比函数的概念
教学难点
例1涉及较多的《科学》学科知识,学生理解问题时有一定的难度。
教学媒体准备
教学设计过程
(①教学程序设计;②教法设计;③学法设计;④教材的处理与媒体。)
一、通过对两个变量之间的反比例关系
《反比例函数》说课稿
《反比例函数》说课稿
各位专家领导,上午好,我是
今天我要为大家说课的题目是《反比例函数》
以下我将从五个部分来对本节课的设计进行说明:一、二、三、四、五 一、首先我对教材进行一些分析。
(1)本课内容是人教版九年级数学第五章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(2)教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知水平为出发点来制定教学目标:
首先基础知识目标:通过对实际问题的探究,理解反比例函数的实际意义,会判断反比例函数。
然后能力训练目标:在思考、归纳过程中,培养学生勤于思考和分析归纳能力,并且让学生会求反比例函数关系式。 最后德育渗透目标:通过创设情境让学生体验数学活动与人类生活的密切联系,养成用数学思维方式解决实际问题的习惯。
本着课程标准,在吃透教材的基础上,我制订了如下的教学重难点和关键点 重点:反比例函数的概念
难点:求反比
18.4 反比例函数
18.4 反比例函数(第1课时)
一、素质教育目标 (一)知识储备点
1.了解反比例函数的意义. 2.了解反比例函数图象的特征. 3.掌握反比例函数的性质. (二)能力培养点
通过观察反比例函数图象的特征,能够正确地归纳出反比例函数的性质,进一步培养学生从运动中概括抽象出事物本质属性的能力, 进一步拓宽数形结合的思路和方法. (三)情感体验点
通过利用反比例函数解决简单问题,体验反比例函数与人类生活的密切联系,增强对反比例函数学习的求知欲,发展学生的探索与创新精神. 二、教学设想 1.重点、难点
重点:由反比例函数图象探索反比例函数的性质. 难点:反比例函数性质的灵活运用. 2.课型与基本教学思路 课型:新授课.
教学思路:情境质疑──观察操作──概括归纳──解决问题. 三、媒体平台 1.教具学具准备
教具:多媒体一台,三角板一副,彩色粉笔若干. 学具:三角板一副,几何练习簿一本,彩笔若干. 2.多媒体课件撷英 (1)课件资讯
利用powerpoint制作幻灯片:问题、例题、达标反馈等;华东师范大学出版社教学光盘中课件:“你能建围栏吗?”、