高中数学考点题型与解题方法
“高中数学考点题型与解题方法”相关的资料有哪些?“高中数学考点题型与解题方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学考点题型与解题方法”相关范文大全或资料大全,欢迎大家分享。
高中数学数列复习_题型归纳_解题方法整理
v1.0 可编辑可修改
1 1 数列
典型例题分析
【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数
列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an }
的前n 项和S n .
解:(Ⅰ)由题设知公差d ≠0,
由a 1=1,a 1,a 3,a 9成等比数列得121d +
=1812d d
++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n.
(Ⅱ)由(Ⅰ)知2m
a =2n ,由等比数列前n 项和
公式得 S m =2+22+23+…+2n =2(12)
12
n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是
等比数列,公比为d
a ,其中a 是常数,d 是{}n
a 的
v1.0 可编辑可修改
公差。(a>0且a≠1).
【题型2】与“前n项和Sn与通项an”、常
用求通项公式的结合
例 2 已知数列{a n}的前三项与数列{b n}的前
三项对应相同,且a1+2a2+22a3+…+2n-1a n=
8n对任意的n∈N*都成立,数列{b n+1-b n}是等
差数列.求数列{a
高中数学高考导数题型分析及解题方法
导数题型分析及解题方法
一、考试内容
导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析
题型一:利用导数研究函数的极值、最值。
32
f(x) x 3x 2在区间 1,1 上的最大值是 2 1.
题型二:利用导数几何意义求切线方程
4
1.若曲线f(x) x x在P点处的切线平行于直线3x y 0,则P点的坐标为 (1,0)
4
y x2.若曲线的一条切线l与直线x 4y 8 0垂直,则l的方程为 4x y 3 0
题型三:利用导数研究函数的单调性,极值、最值
32
f(x) x ax bx c,过曲线y f(x)上的点P(1,f(1))的切线方程为y=3x+1 1.已知函数
(Ⅰ)若函数f(x)在x 2处有极值,求f(x)的表达式;
(Ⅱ)在(Ⅰ)的条件下,求函数y f(x)在[-3,1]上的最大值; (Ⅲ)若函数y f(x)在区间[-2,1]上单调递增,求实数b的取值范围
322
f(x) x ax bx c,求导数得f(x) 3x 2ax b. 解:(1)由
过y f(x)上点P(1,f(1))的切线方程为:
y f(
高中数学解题基本方法
good
高中数学解题基本方法
换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+ x的值域时,易发现x∈[0,1],设x=sin2α ,α∈[
高中数学解题思想和解题方法
目 录
前言 ????????????????????? 2 第一章
高中数学解题基本方法 ????????? 3 一、 配方法 ??????????????? 3 二、 换元法 ??????????????? 7 三、 待定系数法 ????????????? 14 四、 定义法 ??????????????? 19 五、 数学归纳法 ????????????? 23 六、 参数法 ??????????????? 28 七、 反证法 ??????????????? 32 八、 消去法 ??????????????? 九、 分析与综合法 ???????????? 十、 特殊与一般法 ???????????? 十一、 十二、 第二章
类比与归纳法 ?????????? 观察与实验法 ??????????
高中数学常用的数学思想 ???????? 35
一、 数形结合思想 ???????????? 35 二、 分类讨论思想 ???????????? 41 三、 函数与方程思想 ??????????? 47 四、 转化(化归)思想 ?????????? 54 第三章
高考热点问题和解题策略 ???????? 59 一、 应用
高中数学解题基本方法——配方法
掌握一种解题的基本方法。
高中数学解题基本方法——配方法
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab+b,将这个公式灵活运用,可得到各种基本配方形式,如:
a+b=(a+b)-2ab=(a-b)+2ab; 2222222
b22a+ab+b=(a+b)-ab=(a-b)+3ab=(a+)+(b); 222222
a+b+c+ab+bc+ca=
22222221222[(a+b)+(b+c)+(c+a)] 22a+b+c=(a+b+c)-2(ab+bc+ca)=(a+b-c)-2(ab-bc-ca)=
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα);
x+2211
高中数学解题思想方法大全
目录
前言 (2)
第一章高中数学常用的数学思想 (3)
一、数形结合思想 (3)
二、分类讨论思想 (9)
三、函数与方程思想 (15)
四、转化(化归)思想 (22)
第二章高中数学解题基本方法 (23)
一、配方法 (23)
二、换元法 (27)
三、待定系数法 (34)
四、定义法 (39)
五、数学归纳法 (43)
六、参数法 (48)
七、反证法 (52)
八、消去法 (54)
九、分析与综合法 (55)
十、特殊与一般法 (56)
十一、类比与归纳法 (57)
十二、观察与实验法 (58)
第三章高考热点问题和解题策略 (59)
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分析…………………………
二、两套高考模拟试卷…………………………
三、参考答案……………………………………
实用文档
.
前言
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一
个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题
高中数学解题思想方法大全
目录
前言 (2)
第一章高中数学常用的数学思想 (3)
一、数形结合思想 (3)
二、分类讨论思想 (9)
三、函数与方程思想 (15)
四、转化(化归)思想 (22)
第二章高中数学解题基本方法 (23)
一、配方法 (23)
二、换元法 (27)
三、待定系数法 (34)
四、定义法 (39)
五、数学归纳法 (43)
六、参数法 (48)
七、反证法 (52)
八、消去法 (54)
九、分析与综合法 (55)
十、特殊与一般法 (56)
十一、类比与归纳法 (57)
十二、观察与实验法 (58)
第三章高考热点问题和解题策略 (59)
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分析…………………………
二、两套高考模拟试卷…………………………
三、参考答案……………………………………
实用文档
.
前言
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一
个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题
高中数学解题方法及解析大全
高中数学解题方法大全
最全面的高考复习资料
目录
前言 (2)
第一章高中数学解题基本方法 (3)
一、配方法 (3)
二、换元法 (7)
三、待定系数法 (14)
四、定义法 (19)
五、数学归纳法 (23)
六、参数法 (28)
七、反证法 (32)
八、消去法………………………………………
九、分析与综合法………………………………
十、特殊与一般法………………………………
十一、类比与归纳法…………………………
十二、观察与实验法…………………………
第二章高中数学常用的数学思想 (35)
一、数形结合思想 (35)
二、分类讨论思想 (41)
三、函数与方程思想 (47)
四、转化(化归)思想 (54)
第三章高考热点问题和解题策略 (59)
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分析…………………………
2
二、两套高考模拟试卷…………………………
三、参考答案……………………………………
前言
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及
高中数学概率与统计问题的题型与方法
篇一:高二数学概率与统计问题的题型与方法2
第110-113课时 概率与统计问题的题型与方法
一.复习目标:
1. 了解典型分布列:0~1分布,二项分布,几何分布。
2. 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
3. 在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。
4. 了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质。
5. 了解标准正态分布的意义和性质,掌握正态总体N(?,?2)转化为标准正态总体N(0,
1)的公式F(x)??(x??
?)及其应用。
6. 通过生产过程的质量控制图,了解假设检验的基本思想。
7. 了解相关关系、回归分析、散点图等概念,会求回归直线方程。
8. 了解相关系数的计算公式及其意义,会用相关系数公式进行计算。
了解相关性检验的方法与步骤,会用相关性检验方法进行检验。
二.考试要求:
⑴了解随机变量、离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
⑵了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
⑶会用抽机抽样,系统抽样,分层抽样等常用的抽样方法从总体中抽取样本。 ⑷会用样本频率分布
高中数学解题思维与思想
《高中数学解题思维与思想》
导 读
数学家G . 波利亚在《怎样解题》中说过:数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:
一、数学思维的变通性
根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性
提出独特见解,检查思维过程,不盲从、不轻信。 三、数学思维的严密性
考察问题严格、准确,运算和推理精确无误。 四、数学思维的开拓性
对一个问题从多方面考虑、对一个对象从多种角度观察、对一个题目运用多种不同的解法。
什么”转变,从而培养他们的思维能力。
《思维与思想》的即时性、针对性、实用性,已在教学实践中得到了全面验证。
一、高中数学解题思维策略
第一讲 数学思维的变通性
一、概念
数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察
心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持