数学建模插值例题
“数学建模插值例题”相关的资料有哪些?“数学建模插值例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学建模插值例题”相关范文大全或资料大全,欢迎大家分享。
数学建模插值及拟合详解
. . . . .
插值和拟合
实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。
实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。
实验内容:
一、插值
1.插值的基本思想
·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数y= f (x)产生;
·构造一个相对简单的函数y=P(x);
·使P通过全部节点,即P (xk) = yk,k=0,1,…, n ;
·用P (x)作为函数f ( x )的近似。
2.用MA TLAB作一维插值计算
yi=interp1(x,y,xi,'method')
注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。
练习1:机床加工问题
x 0 3 5 7 9 11 12
数学建模 插值与拟合方法
插值与拟合方法
数学建模社团活动
主讲人:赵振刚
第一章 插值与拟合方法一般插值方法; 样条函数与样条插值方法; 磨光法与B样条函数; 最小二乘拟合方法; 应用案例分析与应用练习.
2
2013年11月24日
一、一般插值方法1.一般问题的提出实际中不知道函数 y f (x) 的具体表达式, 由实验 测量对于 x xi 有值 y yi (i 0,1,2, , n) ,寻求另一 函数 (x) 使满足: ( x i ) yi f ( xi ) 。此问题称为插值问题, 并称 (x) 为 f (x) 的插值 函数; x 0 , x1 , x2 , , xn 称为插值节点;
( x i ) yi (i 0,1,2, , n) 称 为 插 值 条 件 , 即 ( x i ) yi f ( xi ) ,且 ( x) f ( x) 。3 2013年11月24日
一、一般插值方法2. Lagrange插值公式设函数 y f (x) 在 n 1 个相异点 x 0 , x1 , x2 , , xn 上的值为 y 0 , y1 , y 2 , , yn ,要求一个次数
数学建模插值与拟合实验题
数学建模插值与拟合实验题
1. 处理2007年大学生数学建模竞赛A题:“中国人口增长预测”附件中的数据,得到以下几个问题的拟合结果,并绘制图形
(1)对1994-2005年出生婴儿的性别比进行拟合,并以此预测2006-2015年间的性别比。
(2)生育率随年龄的变化而变化,试以生育年龄为自变量,生育率为因变量,对各年的育龄妇女生育率进行拟合;
(3)按时间分布对城、镇、乡生育率进行分析,以时间为自变量,生育率为因变量,对城、镇、乡的生育率进行拟合,并预测2006-2015年间的生育率。
(4)将某年的城镇化水平PU(t)定义为当年的城镇人口数与总人口数之
比,Karmeshu(1992年)研究发现20世纪50年代以来发达国家随着经济发展水平的提高,城镇人口的增长相对农村要快一些,但是随着城镇化水平的提高,并趋向100%时,速度会减缓,城镇化水平的增长曲线大致表现为一条拉伸的“S”型Logistic曲线[4],对附录2中所给出2001年—2005年中国人口1%调查数据进行曲线拟合,求得该曲线,并绘制2001-2050年的城镇化水平的曲线图。
2. 处理2011年大学生数学建模竞赛A题:“城市表层土壤重金属污染分析”附件中的数据,完成下列问题
(1
数学建模典型例题
一、人体重变化
某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克? 天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、 问题分析
人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。
二、 模型假设
1、 以脂肪形式贮存的热量100%有效
2、 当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、 假设体重的变化是一个连续函数 4、 初始体重为W0
三、 模型建立
假设在△t时间内:
体重的变化量为W(t+△t)-W(t);
身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量;
转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt;
四、 模型求解
d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得:
(-69t/41686)
5429-69
spline插值
例5.6.1给定以下数据, 求出三次样条函数,并计算函数分别在-0.15,-0.05,0.05,0.18,0.25处的近似值,并作图。
x y 解:编程如下: clear
x=[0.1,0.2,0.15,0,-0.2,0.3];y=[0.95,0.84,0.86,1.06,1.50,0.72]; pp=spline(x,y); pp.coefs
xx=[-0.15,-0.05,0.05,0.18,0.25]; yy=ppval(pp,xx) %or:yy=spline(x,y,xx) fnplt(pp,'k') hold on plot(x,y,'o') hold on plot(xx,yy,'r*') 运行结果: ans =
-36.3850 21.8592 -5.1164 1.5000 -36.3850 0.0282 -0.7390 1.0600 227.6995 -10.8873 -1.8249 0.9500 -143.0047 23.2676 -1.2059 0.8600 -143.0047 1.8169 0.0484 0.8400 yy =
matlab插值
插值就是已知一组离散的数据点集,在集合内部某两个点之间预测函数值的方法。
一、一维插值
插值运算是根据数据的分布规律,找到一个函数表达式可以连接已知的各点,并用此函数表达式预测两点之间任意位置上的函数值。
插值运算在信号处理和图像处理领域应用十分广泛。
1.一维插值函数的使用
若已知的数据集是平面上的一组离散点集(x,y),则其相应的插值就是一维插值。MATLAB中一维插值函数是interp1。
y=interp([x,]y,xi,[method],['extrap'],[extrapval]),[]代表可选。 method:'nearest','linear','spline','pchip','cubic','v5cubic'。
此m文件运行结果:
放大π/2处:
2.内插运算与外插运算
(1)只对已知数据点集内部的点进行的插值运算称为内插,可比较准确的估测插值点上的函数值。 (2)当插值点落在已知数据集的外部时的插值称为外插,要估计外插函数值很难。
MATLAB对已知数据集外部点上函数值的预测都返回NaN,但可通过为interp1函数添加'extrap'参数指明也用于
MATLAB拉格郎日插值法与牛顿插值法构造插值多项式
MATLAB拉格郎日插值法与牛顿插值法构造插值多项式
姓名:樊元君 学号:2012200902 日期:2012.10.25
1.实验目的:
掌握拉格郎日插值法与牛顿插值法构造插值多项式。
2.实验内容:
分别写出拉格郎日插值法与牛顿插值法的算法,编写程序上机调试出结果,要求所编程序适用于任何一组插值节点,即能解决这一类问题,而不是某一个问题。实验中以下列数据验证程序的正确性。 已知下列函数表
求x=0.5635时的函数值。
MATLAB拉格郎日插值法与牛顿插值法构造插值多项式
3.程序流程图:
● 拉格朗日插值法流程图:
MATLAB拉格郎日插值法与牛顿插值法构造插值多项式
●牛顿插值法流程图:
MATLAB拉格郎日插值法与牛顿插值法构造插值多项式
4.源程序:
● 拉格朗日插值法:
function [] = LGLR(x,y,v)
x=input('X数组=:');
y=input('Y数组=');
v=input('插值点数值=:');
n=length(x);
u=0;
for k=1:n
t=1;
for j=1:n
if j~=k
t=t*(v-x(j))/(x(k)-x(j));
end
end
u=u+t*y(k);
end
disp('插值结果=');
插值及其误差
插值及其误差 x sin x cos x tan x 1.567 0.999 992 8 0.003 796 3 263.411 25 1.568 0.999 996 1 0.002 796 3 357.611 06 1.569 0.999 998 4 0.001 796 3 556.690 98 1.570 0.999 999 7 0.000 796 3 1255.765 59 用表中的数据和任一插值公式求: (1)用tan x表格直接计算tan 1.569 5。
(2)用sin 1.569 5和cos 1.569 5来计算tan 1.569 5。并讨论这两个结果中误差变化的原因。
插值:求过已知有限个数据点的近似函数。 1 插值方法
下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插
值、Hermite 插值和三次样条插值。 1.1 拉格朗日多项式插值 1.1.1 插值多项式
用多项式作为研究插值的工具,称为代数插值。其基本问题是:已知函数
f?x?在区间?a,b?上n?1个不同点x0,x1,yi?f?xi??i?0,1,,xn处的函数值
,n?,求一个至多n次多项式 ?anxn(1)
?n?x??a0
非数理专业数学建模例题
逻辑分析,构建数学模型,适合非专业学生
题目:体检时间安排的合理性讨论
某高校教职工(现教职工1604人)每二年到医院体检中心体检。体检时间早晨7:00——8:30,单位安排见体检安排表。体检项目:内科、外科、眼科、五官科、血压、血常规、胸片、心电图、腹部B超等,体检各项所需时间(不含等待时间,下同):内科1-2分钟、外科1-2分钟、眼科1-3分钟、五官科1-3分钟、血压2-3分钟、血常规(抽血)1-2分钟、胸片1-2分钟、心电图1-3分钟、腹部B超2-5分钟。用于体检的医生(设备)数量:内科2个、外科1个、眼科1个、五官科1个、血压1个、血常规(抽血)2个、胸片2个、心电图2个、腹部B超3个。 体检程序:体检者体检当天在体检中心取体检表(所需时间1-2分钟,有两个窗口),再按规定的体检项目自行前往体检各科室进行相应检查(体检项目无先后顺序),体检结束后将体检表交体检中心服务台。
假定教职工一般在7:00——8:00到中心体检,且每个人当天做完所有(或部分)检查,不会改天再来;因有课、有事不能按照单位安排时间内体检的,则在学校体检时间范围内自行选择体检时间;每个机关处室人数大约8-12人,后勤管理处、后勤服务总公司大约120人。
请你建立模型分析在规
非数理专业数学建模例题
逻辑分析,构建数学模型,适合非专业学生
题目:体检时间安排的合理性讨论
某高校教职工(现教职工1604人)每二年到医院体检中心体检。体检时间早晨7:00——8:30,单位安排见体检安排表。体检项目:内科、外科、眼科、五官科、血压、血常规、胸片、心电图、腹部B超等,体检各项所需时间(不含等待时间,下同):内科1-2分钟、外科1-2分钟、眼科1-3分钟、五官科1-3分钟、血压2-3分钟、血常规(抽血)1-2分钟、胸片1-2分钟、心电图1-3分钟、腹部B超2-5分钟。用于体检的医生(设备)数量:内科2个、外科1个、眼科1个、五官科1个、血压1个、血常规(抽血)2个、胸片2个、心电图2个、腹部B超3个。 体检程序:体检者体检当天在体检中心取体检表(所需时间1-2分钟,有两个窗口),再按规定的体检项目自行前往体检各科室进行相应检查(体检项目无先后顺序),体检结束后将体检表交体检中心服务台。
假定教职工一般在7:00——8:00到中心体检,且每个人当天做完所有(或部分)检查,不会改天再来;因有课、有事不能按照单位安排时间内体检的,则在学校体检时间范围内自行选择体检时间;每个机关处室人数大约8-12人,后勤管理处、后勤服务总公司大约120人。
请你建立模型分析在规