正余弦函数的对称轴和对称中心怎么求
“正余弦函数的对称轴和对称中心怎么求”相关的资料有哪些?“正余弦函数的对称轴和对称中心怎么求”相关的范文有哪些?怎么写?下面是小编为您精心整理的“正余弦函数的对称轴和对称中心怎么求”相关范文大全或资料大全,欢迎大家分享。
正余弦函数图像的对称轴和对称中心
正余弦函数图像的对称轴和对称中心
【基本结论】:
正弦曲线x y sin =,R x ∈的对称轴方程是2ππ+=k x ,Z k ∈;对称中心坐标为 (πk ,0),Z k ∈。
余弦曲线x y cos =,R x ∈的对称轴方程是πk x =,Z k ∈;对称中心坐标为 (2
π
π+k ,0),Z k ∈。
【典例分析】: 例1 求函数)32cos(3π-
-=x y 的对称中心和对称轴方程。 解: 由于函数
x y cos =的对称中心为(2ππ+k ,0),(Z k ∈)对称轴方程是πk x = 又由232πππ+=-
k x ,得1252ππ+=k x (Z k ∈) 由ππ
k x =-32,得62π
π
+=k x (Z k ∈)
故函数)32cos(3π
--=x y 的对称中心为(1252ππ
+
k ,3)(Z k ∈) 对称轴方程为62ππ+=
k x (Z k ∈) 例2 已知函数)2sin()(?+=x x f 的图像关于直线8π=x 对称,求?的值。
解: 由于函数x x f sin )(=的图像的对称轴方程为ππ
k x +=2(Z k ∈)
所以,函数)2s i n ()(?+=x x f 的图像的对称轴方程
二次函数顶点对称轴,解析式
《二次函数的图象》教案
一、教学目标
(一)知识目标
2y ax bx c的图象; 1.使学生会用描点法画出二次函数
2.使学生会用配方法确定抛物线的顶点和对称轴(对于不升学的学生,只要求会用公式确定抛物线的顶点和对称轴);
3.使学生进一步理解二次函数与抛物线的有关概念;
4.使学生会用待定系数法由已知图像上三点的坐标求二次函数的解析式.
(二)能力目标
1.培养学生分析问题、解决问题的能力;
2.向学生进行配方法和待定系数法的渗透,使学生能初步掌握;
(三)情感目标
1.向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育.
2.通过二次函数的进一步研究,让学生认识到二次函数的对称轴、顶点坐标与二次项系数、一次项系数及常数项之间的内在联系的数学美及和谐的数学美.
二、教学方法
教师采用比较法、观察法、归纳总结法
本节重点是求二次函数解析式及将二次函数的解析式配方,确定抛物线的顶点、对称轴等特征,进而画出这条抛物线,在学习中,学生不要死记硬背,要运用数形结合思想,熟练画出抛物线草图,结合图像研究函数的性质以及不同图像之间的相互关系.
三、重点·难点·疑点及解决办法
1.教学重点:用配方法确定抛物线的顶点坐标求对称轴及用待定系数法由已知图像上2y
聚焦椭圆准线与对称轴的交点的性质
维普资讯ttp:h//ww.wcqvip.omcr囊 . 0 _矧 0 年1 0月耍上 __●月 半
焦椭聚圆线准对与轴称的交点的性质浙(江省杭师州范学院附属高级中学 31 003 0 ) 苏立 标我在教们研学究,中我们常常“钟情”于椭圆的焦中、点点等顶“点”性的质研究,而对圆椭线准
椭圆的切线的交点为 z(。, ,得切 )线方程为 y oq _。 y,
与称轴对交点性质的的讨论,却往往是教学研究的一“个盲点”,是一个“被遗忘的角落”聚集在,椭
一6
1又因,为切过点线 (一等,o ,)所 代人以切:± . e圆准线与对称轴交的点上有很多有趣性的,质耐线方程得: (等 C一  ̄)n 7 C o ×+ D。o一 1,即: 。z一 P(,± )故,线切率斜为 4一 - 2角分平线问题人寻味的性质蕴涵着椭圆丰富多彩几的何特征 .本文试图对椭圆准与线对称轴的交点性质作些一思考与总 .结 1定值问题性质 3:过椭圆+一 1( n>b>o)的左
一2 2
n。D性质1:设椭上圆 _+万 y1:( n>b>o ) 的左Ⅱ
焦点任意F一作条与两坐标轴不都直垂的A弦B ,若M为圆椭的准线左l对与称轴的点,交则
聚焦椭圆准线与对称轴的交点的性质
维普资讯ttp:h//ww.wcqvip.omcr囊 . 0 _矧 0 年1 0月耍上 __●月 半
焦椭聚圆线准对与轴称的交点的性质浙(江省杭师州范学院附属高级中学 31 003 0 ) 苏立 标我在教们研学究,中我们常常“钟情”于椭圆的焦中、点点等顶“点”性的质研究,而对圆椭线准
椭圆的切线的交点为 z(。, ,得切 )线方程为 y oq _。 y,
与称轴对交点性质的的讨论,却往往是教学研究的一“个盲点”,是一个“被遗忘的角落”聚集在,椭
一6
1又因,为切过点线 (一等,o ,)所 代人以切:± . e圆准线与对称轴交的点上有很多有趣性的,质耐线方程得: (等 C一  ̄)n 7 C o ×+ D。o一 1,即: 。z一 P(,± )故,线切率斜为 4一 - 2角分平线问题人寻味的性质蕴涵着椭圆丰富多彩几的何特征 .本文试图对椭圆准与线对称轴的交点性质作些一思考与总 .结 1定值问题性质 3:过椭圆+一 1( n>b>o)的左
一2 2
n。D性质1:设椭上圆 _+万 y1:( n>b>o ) 的左Ⅱ
焦点任意F一作条与两坐标轴不都直垂的A弦B ,若M为圆椭的准线左l对与称轴的点,交则
绕对称轴转动的均匀带电圆盘的磁场分布
绕对称轴转动的均匀带电圆盘的磁场分布
机械茅班 杨婧 20091018
摘 要:薄圆盘实现生活中高度对称的一类物体,应用广泛。摩擦等一些方式使其带电,成为绕对称轴转动的均匀带电圆盘,由于转动产生电磁场,当带电量足够大和变速转动时的角加速度又比较大时,则产生的电磁辐射场将会干扰周围无线电接收机的正常工作,分析绕对称轴转动的均匀带电圆盘具有一定的现实意义。本文从研究圆环电流出发,在圆盘上任取一个带电小圆环,小圆环转动形成电流,电流产生磁场,利用场强叠加原理得整个带电圆盘的电磁场。
关键词:匀速转动,麦克斯韦方程,推迟势,磁场强度
一.推迟势的推导
绕对称轴转动的均匀带电薄圆盘的电磁辐射场应满足麦克斯韦方程: (1)
????2??1?E??J?2E-22??()??0C?t?0?t??2????1?B2?B?22??0??JC?t
用矢势和标势为: (2)
????B???A?????AE??????t
矢势和标势满足达朗贝方程和洛伦兹变换条件,于是(1)式得 (3)
??2????1?A2?A-22???0JC?t1?2??2???22??C?t?0??1????A?2?0C?t
方程(3
专题练习轴对称和中心对称
八闽教育网www.bmjyw.com
全国2011年中考数学试题分类解析汇编(100套上)
专题43:轴对称和中心对称
一、选择题
1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是
A、等边三角形
B、平行四边形 C、梯形
D、矩形
【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。故选D。 2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是
【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.(天津3分)如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为
(A) 15° (B) 30°
《中心对称与中心对称图形》评课
《中心对称和中心对称图形》评课 增城市荔城街第一中学数学科组 徐耀洪
2010年9月15日,在增城市第二中学进行了初三年级的第一次“一课两讲”的教学教研活动,分别由增城市第二中学的欧阳顺银老师和香江中学的封明强老师授课,两位老师的讲课各有侧重、各有特色,都很成功,给我们做了很好的示范作用。但给我们更多的是思考——思考如何能把学习的主动性交回给学生,如何上一节高效的数学课。
以下是我对这两节课的一些粗浅的认识,不当之处请见谅。
首先,从教材来看,《中心对称与中心对称图形》是在学习旋转的基础上引申出的一个全新概念,因此本节的课程应该是建立在充分理解旋转概念的基础上的。教学中重点在于中心对称的定义和性质以及作法。难点就在于性质的理解。
其次《中心对称与中心对称图形》是继《轴对称》之后图形的又一变换。在中考中二者常常结合在一起考查,因此在教学中既要突出中心对称的定义与作法外还应结合轴对称让学生理解二者的区别与联系。
在教学过程中,两位老师都突出了重难点,抓住了课程的根本,又有着不同的侧重点。
增城市第二中学的欧阳顺银老师:
欧阳顺银老师给我的总体感觉是:教师吃透了教材,用活了教材;学生探究了方法,掌握了知识,受到了美的熏陶,尝试了美的创造。
1、引
3.2中心对称与中心对称图形(1)
3.2中心对称与中心对称图形(1)
情景1
观察下面的2组图形,看一看各组中2个图形 的形状、大小是否相同?怎样将一个图形旋 转得到另一个图形?
情景1
观察下面的2组图形,看一看各组中2个图形 的形状、大小是否相同?怎样将一个图形旋 转得到另一个图形?
情景2
观察下面的2个四边形,怎样将一个四边形 转化到另一个四边形?
D A B C.
C′ D′
B′ A′
O
情景2
观察下面的2个四边形,看一看怎样由一个 四边形转化到另一个四边形?
中心对称把一个图形绕某一点旋转 0,如果它能够与另一个图形 180 重合,那么称这两个图形关于这 点对称,也称这两个图形成中心 对称,这个点叫做对称中心,两个 图形中的对应点叫做对称点.
成中心对称的两个图形有什么性质?DA.
C′D′
B′ A′
B
C
O
中心对称的性质
性质1:成中心对称的两个图形具 有图形旋转的一切性质.
做做,你有体验了! 四边形ABCD和四边形A′B′C′D′关于点O中心D A B
对称,连接AA′、BB′、CC′、DD′,你有什么 发现?C′ . O D′ B′ A′
C
成中心对称的2个图形,对称点连线都经 过对称中心,并且被对称中心平分.
中心对称的性质性质2:成中心对称的两个图形,对称 点连线都经过对
苏教版三年级数学第六单元平移、旋转和对称轴练习题
第六单元平移、旋转和轴对称练习题
班级: 姓名:
一、下面的运动哪些是平移?哪些是旋转?
1.升降国旗 2.拧开水龙头 3.用钥匙拧开房间门 4.拉动抽屉 5.吊扇在空中运动 6.乘坐电梯 7.转动转盘 8.指针运动 属于平移的有: 属于旋转的有: 二、生活中你还见过哪些平移和旋转?请各写出两个。
、 的运动是平移。 、 的运动是旋转。 三、选择正确答案的序号填在括号里。新 课 标 第 一 网
(1)教室门的打开和关上,门的运动是( ) ①平移 ②旋转 ③既平移又旋转 (2)电风扇的运动是( ) ①平移 ②旋转 ③既平移又旋转
(3)下面( )的运动是平移。①转动着的呼啦圈 ②电风扇的运动 ③拔算珠 (4) 左图是 图形经过( )得到的。①平移 ②旋转 ③既平移又旋转 (5)右图中,从图①到图②是( )得到的,从图②到图③是( )得到的。 A.向右平移7格 B.向右平移9格 C.向右平移11格 D.向下平移1
中心对称导学案
新安县铁门二中 七年级 数学导学案 课题 中心对称图形 授课时间:
课型:新授课 主备人:杨云锋 审核: 一、教学目标:
1、通过观察、探究了解中心对称图形。
2、会判断一些常见图形是否是中心对称图形,能辨认中心对称图形和轴对称图形; 二、教学重点:中心对称图形的概念理解与中心对称图形的性质 三、教学难点:利用中心对称图形的性质作图 四、学法指导:探索、交流、发现 五、教学过程: (一)交流预习
阅读课本相关知识,思考并回答下列问题。
1、一个图形绕着中心旋转 后能与 ,我们把这种图形叫做中心对称图形。 2、把一个图形绕着某一点旋转 ,如果它能够和 重合,那么,我们就说这两个图形成中心对称。
3、中心对称与中心对称图形是一个概念吗? (二)确定目标 (三)分组合作
探究点一:中心对称图形
实例:如图1 将风车的风轮绕O点进行旋转,使得A1移动到A2的位置,交流讨论以下问题。 问题1:旋转后的风轮与原来位