线性代数江苏大学课后答案详解
“线性代数江苏大学课后答案详解”相关的资料有哪些?“线性代数江苏大学课后答案详解”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性代数江苏大学课后答案详解”相关范文大全或资料大全,欢迎大家分享。
江苏大学线性代数习题详解(7)
线性代数习题详解(7)
习题5.2
1. (1)解:A的特征多项式为:
|A- E|= 5 6 62 0
14 2 = 14
3 6 4 3 6 =(2- ) 10
1
14
2 3 6 4 =(2- ) 10
0 14
1 3 6
1
=-(2- )[(4- )(1+ )-6]=( -1)( -2)2 所以A的特征值为: 1=1 2= 3=2 当 1=1时, 解方程(A-E)x=0
A- E= 4
6 610 1 1
32 132 3 6 53 6
5
1
0 1
10 1
31 011 0
6 20
00
3 得基础解系 p1
1
1=
1
3 k1p1(k1 0)是对应于 1=1的全部特征向量
当 2= 3=2时, 解方程(A-2E)x=0 A-2E= 3
6 63 6 6 1
22 000 3
6 6000
2+ 2 4
1
0
0 2 200 00
22
得基础解系 p2= 1 p3= 0
01
k2p2+k3p3(k2、k3不同时为0)是对应于 2= 3=2的全部特征向量
(2)解:A的特征多项式为: 2 117
|A- E
线性代数习题答案详解
线性代数习题答案详解
【篇一:段正敏主编《线性代数》习题解答】
张应应 胡佩 2013-3-1 目录
第一章 第二章 第三章 第四章 第五章 第六章 行列
式 .................................................................................................................... 1 矩
阵 ...................................................................................................................... 22 向量组的线性相关
性 .......................................................................................... 50 线性方程
组 ..............................................................................................
2015线性代数答案(详解) - 图文
效 无 开 撕:卷名试 姓, 整完 订 装持 保 意:注 号 学 线 封线订 密装 :面背 级班的 业纸到 专 写 可 , 时 够 不 空 留 题 答
: ) 部 ( 系 桂林理工大学考查试卷 4.n阶方阵A有两个不同的特征值?,则p(2014~2015学年制第二学期) 1,?2,对应的特征向量分别是p1和p21和p2 线性 无关 . 课程名称: 线性代数 命题者: 试题库 [A]卷 5.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为 –2 . 试卷编码:(下) 考
2015线性代数答案(详解) - 图文
效 无 开 撕:卷名试 姓, 整完 订 装持 保 意:注 号 学 线 封线订 密装 :面背 级班的 业纸到 专 写 可 , 时 够 不 空 留 题 答
: ) 部 ( 系 桂林理工大学考查试卷 4.n阶方阵A有两个不同的特征值?1,?2,对应的特征向量分别是p1和p2,则p1和p2 (2014~2015学年制第二学期) 线性 无关 . 课程名称: 线性代数 命题者: 试题库 [A]卷 5.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为 –2 . 试卷编码:(下) 考
线性代数试题及答案3详解
线性代数试题及答案3详解
线性代数习题和答案
第一部分选择题(共28分)
一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有
一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。
1.设行列式a a
a a
1112
2122
=m,
a a
a a
1311
2321
=n,则行列式
a a a
a a a
111213
212223
+
+
等于( D )
A. m+n
B. -(m+n)
C. n-m
D. m-n
2.设矩阵A=
100
020
003
?
?
?
?
?
?
?
,则A-1等于( B )
A.
1
3
00
1
2
001
?
?
?
?
?
?
?
?
?
?
B
100
1
2
00
1
3
?
?
?
?
?
?
?
?
??
C
?
?
?
?
?
?
?
?
?
2
1
1
3
1
D
1
2
00
1
3
001
?
?
?
?
?
?
?
?
?
?
3.设矩阵A=
312
101
214
-
-
-
?
?
?
?
?
?
?
,A*是A的伴随矩阵,则A *中位于(1,2)的元素是( B )
A. –6
B. 6
C. 2
D. –2
4.设A是方阵,如有矩阵关系式AB=AC,则必有( D )
A. A =0
B. B≠C时A=0
C. A≠0时B=C
D. |A|≠0时B=C
5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于( C )
A. 1
B. 2
C. 3
线性代数试题及答案3详解
1
线性代数习题和答案
第一部分选择题(共28分)
14小题,每小题2分,共28分)在每小题列出的四个选项中只有 请将其代码填在题后的括号内。
A. 如存在数入和向量a 使A a =入a,则a 是A 的属于特征值 入的特征向量
B. 如存在数入和非零向量a,使(入E - A ) a =0,则入是A 的特征值
C. A 的2个不同的特征值可以有同一个特征向量
D. 如入1,入2,入3是A 的3个互不相同的特征值,
a 1, a 2, a 3依次是A 的属于入1,入2,
入3的特征向量,贝y a 1, a 2, a 3有可能线性相关
A. m+n a 11 a 12
=m, a
13
a
11
a 21 a 22
a
23 a
21 1.设行列式 =n ,
C. n- m
0 ' 0
3
丿
B. P 0 -(m+n) 0 2 0
则行列式
D. m- 2.设矩阵A = a
11 a
21
a
12 a 22 +313
+a
23
等于(
<1 0 0
f
冷
i L 0 0
3
1
0 0
1 [
12
1
1
3
[ J 1
I 0 2 0 B 0 2 0
C 0 1 0
D I 0
3 0 0 0 1 LI 0
1
0 0 1 1
0 0 1
丿
3丿 K
2
丿 1
丿
A. 、单
线性代数课后习题答案分析
线性代数课后题详解
第一章 行列式
1.利用对角线法则计算下列三阶行列式:
相信自己加油
201abc(1)
1?4?1; (2)bca
?183cab111xyx?y(3)
abc; (4)
yx?yx.
a2b2c2x?yxy201解 注意看过程解答(1)1?4?1?2?(?4)?3?0?(?1)?(?1)?1?1?8?183?0?1?3?2?(?1)?8?1?(?4)?(?1) =?24?8?16?4 =?4
abc(2)
bca?acb?bac?cba?bbb?aaa?ccc cab?3abc?a3?b3?c3
(3)
111abc?bc2?ca2?ab2?ac2?ba2?cb2 a2b2c2?(a?b)(b?c)(c?a)
xyx?y(4)
yx?yx
x?yxy?x(x?y)y?yx(x?y)?(x?y)yx?y3?(x?y)3?x3 ?3xy(x?y)?y3?3x2y?3y2x?x3?y3?x3 ??2(x3?y3)
2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业
(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1;
重庆大学线性代数答案
习题一解答
21D?61?1填空 (3)设有行列式
31、
为 答:(?1)5?1501?12?4013037304282含因子a12a31a45的项
a12a23a31a45a54??5?2?6?8?3??1440或(?1)4a12a24a31a45a53?5?0?6?8?1?0
1f(x)?111241?241xx2318?8x,f(x)?0的根为 (5)设
解:根据课本第23页例8得到f(x)?(2?1)(?2?1)(?2?2)(x?1)(x?2)(x?2) f(x)?0的根为1,2,?2
(6)设x1,x2,x3是方程x解:根据条件x1?x2?x3?0,
3?px?q?0的三个根,则行列式
x1x3x2x2x1x3x3x2x1=
x3?px?q?(x?x1)(x?x2)(x?x3),比较系数得到
x1x2x3??q;再根据条件x13??px1?q,x23??px2?q,x33??px3?q;
333x?x?x?3x1x2x3??p(x1?x2?x3)?3q?3q?0 123原行列式=
1D?2323434141??(aiJ)24123(7)设 ,则A14?2A24?3A34?4A44=
大学线性代数第五版课后习题答案
线性代数习题册答案
第一章 行列式 练习 一
班级 学号 姓名
1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ(3421)= 5 ; (2)τ(135642)= 6 ;
(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n(n-1).
2.由数字1到9组成的排列1274i56j9为偶排列,则i= 8 、j= 3 .
3.在四阶行列式中,项a12a23a34a41的符号为 负 .
0034.042= -24 . 215
5.计算下列行列式:
?1(1)2222 或
?1?2= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5 ?2?1??(2)11??111= -?3+1+1-(-?)-(-?)―(-?) ??= -?+3?+2=(2??)(??1)
312
1
练习 二
班级 学号 姓名