微积分公式总结
“微积分公式总结”相关的资料有哪些?“微积分公式总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“微积分公式总结”相关范文大全或资料大全,欢迎大家分享。
微积分-积分公式定理集锦
各种积分公式,公式大概分为四类,
北京理工大学
微积分-积分定理集锦
常用积分公式 定理
程功 2010/12/22
各种积分公式,公式大概分为四类,
定理
1.积分存在定理
1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.
2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。
2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的
a
a
a
bbb
情况)。
性质2. kf(x)dx k f(x)dx k为常数
a
a
bb
假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)
a
a
c
bcb
性质4: 1 dx badx b a
a
b
性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)
a
b
推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)
a
a
bb
推论(2):
b
a
f()xdx fx a b
a
b
性质6:设M及m分别是函数f x 上的最大值与最小值,则
m(b a) f(x)dx M(b a)
a
b
3.定积分中值定理
如果函数f x
所有微积分公式《全》
所有微积分公式《全》
·两角和与差的三角函数
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ
考研数学:微积分公式汇总
考研数学:微积分公式汇总
凯程考研集训营,为学生引路,为学员服务!
第 2 页 共 2 页
凯程考研集训营,为学生引路,为学员服务!
第 3 页 共 3 页
凯程考研集训营,为学生引路,为学员服务!
第 4 页 共 4 页
一分耕耘一分收获。加油!
导数,微积分公式Word 文档
四、基本求导法则与导数公式
1. 基本初等函数的导数公式和求导法则
基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1)
(C)??0 (3) (sinx)??cosx (5)
(tanx)??sec2x (7) (secx)??secxtanx
xx (9)
(a)??alna (log1ax)?? (11)
xlna
(arcsinx)??1 (13)
1?x2
(arctanx)??1 (15)
1?x2
函数的和、差、积、商的求导法则 设
u?u(x),
v?v(x)都可导,则
(1) (u?v)??u??v? (2)(3)
(4)(uv)??u?v?uv? 反函数求导法则
(x?)???x??1 (cosx)???sinx
(cotx)???csc2x
(cscx)???cscxcotx
(ex)??ex
(lnx)??1x,
(arccosx)???11?x2
(arccotx)???11?x2(Cu)??Cu?(C是常数)
???u??u?v?uv??v
高数(一)微积分公式(重要)
高等数学(一)微积分,自考的经验积累
特殊角的三角函数值
例1.已知一个三角函数值,求其他的三角函数值。
(1)已知tanx=3求其他的三角函数值 斜边
^2=a^2+b^2
Sinx=对/斜 cosx=邻/斜 tgX=对/邻 cotX=邻/对 sec x=1/cosx
①倒数关系:
②商的关系
③平方关系
两角和的正弦、余弦、正切公式
两角差的正弦、余弦、正切公式
倍角公式
高等数学(一)微积分,自考的经验积累
降幂公式
积化和差公式
对数函数有下列性质:设a,b,c,x,y为任意正数,(α≠1,c≠1),α为任意实数
①
②; ;
③
④
⑤。 ; ;
:如果q≠1时,
例2.(56页1(3))判断下列级数的敛散性,并在收敛时求出其和:
解:
高等数学(一)微积分,自考的经验积累
由
一、极限运算法则
定理
设
(1)
(2) ,则 得级数收敛,其和为。
(3)
3.无穷小的运算性质:
(1)在同一过程中,有限个无穷小的代数和仍是无穷小。
(2)有限个无穷小的乘积也是无穷小。
(3)有界变量与无穷小的乘积是无穷小。
.定理 在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大。
2.意义:关于无穷大的讨论,都可归结为关于无穷小的讨论。 小结:当,m和n为非负整数时有
无穷小分出法
微积分题型总结
.
微积分题型总结
第一部分 函 数
函数是整个高等数学研究的主要对象,因而成为考核的对象之一。特别是一元函数的定义和性质,其中包括反函数、复合函数、隐函数、初等函数和分段函数的定义和性质。
一、 重点内容提要
1、函数定义中的关键要素是定义域与对应法则,这里要特别注意两点:
①两个函数只有当它们的定义域和对应法则都相同时,才能说它们是相同的函数。 ②分段函数是一个函数而不是几个函数。 求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)
对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x的取值范围(集合) 主要根据:
①分式函数:分母≠0
②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0
④反正(余)弦函数式:自变量x?1
例1例2例3求函数y?x?x的定义域。求函数y=ln(x?2y)4?x?y22 的定义域。2?x 的定义域1-2x2例4 y?ln(x?3x)?arccosx
在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。 2、关于反函数定义,我们仅要求掌握变量反解法。 3、函数的简单性质,重点掌握奇偶性、单调性。 4、关于复合函数定义
将复合函数拆成
微积分总结(下册) - 图文
微积分(B II)总结
chapter 8 多元函数微分学
8.1 多元函数的极限
先看极限是否存在(一个方向组(y=kx)或两个方向趋近于极限点(给定方向必须当x满足极限过程时,y也满足极限过程))。如果存在,能先求的先求,能用等价无穷小替换的就替换,最后考虑夹逼准则。
8.2 偏导数
点导数定义(多用于分段函数的分界点)
fx(x,y)=limDx?0f(x0+Dx,y0)-f(x0,y0)Dx fx(x0+Dx,y0)-fx(x0,y0)Dx
fxx(x0,y0)=lim例:求
Dx?0f(x,y)=xy,fx(0,0),就是求分段函数的点偏导数
f(x,y)在(x0,y0)连续,但偏导数不一定存在(如:锥)
8.3 全微分
函数可微,则偏导数必存在(逆否命题可证明函数不可微,证明时,把右边前两项移到左边,看它是不是r的高阶无穷小)
?z?zDz=Dx+Dy+o(r)?x?y?z?zdz=dx+dy?x?y
例:
对于某一点处的全微分,也可能要用到点导数。
8.4多元复合函数求导 8.4.1链式求导法则
z(x,y)=f(u(x,y),v(x,y))?z?f?u?f?v=+?x?u?x?v?x
链式求导法则要求函数对每个中间变量求偏导,乘
5-2-微积分基本公式(下)
深大 高数 课件
第二节 微积分基本公式(下)三、牛顿 – 莱布尼兹公式
第五章
深大 高数 课件
牛顿—莱布尼茨公式设F ( x ) 是f ( x )的一个原函数, f ( t )dt 也是f ( x )的一个原函数.x a xa
f (t )dt F ( x ) C .
令 x a, 得 C F (a ),x a
0
a
a
f (t )dt F (a ) C .
f (t )dt F ( x ) F (a ).
令x b
a f ( x )dx F (b) F (a ).b
深大 高数 课件
定理 :设函数 f ( x )在[a , b]上连续,F ( x )是 f ( x )的一个原函数,则
b a
f ( x ) dx F (b) F (a ) (牛顿-莱布尼兹公式)
上式说明:连续函数在一个区间上的积分等于 它的一个原函数在积分区间端点的改变量。意义:牛顿-莱布尼兹公式沟通了积分和(反) 导数这两个微积分学中最基本的概念,因此也 称为微积分基本公式。 另一种形式: F (b) F (a )
b a
F ( x ) dx .
深大 高数 课件
a f ( x )dx F (b)
高等数学同济版大学微积分公式
(tgx)′=secx(ctgx)′= csc2x(secx)′=secx tgx(cscx)′= cscx ctgx(ax)′=axlna(logax)′=
1xlna
2
(arcsinx)′=
1
x2
1
(arccosx)′=
x21
(arctgx)′=
1+x2
1
(arcctgx)′=
1+x2
∫tgxdx= lncosx+C∫ctgxdx=lnsinx+C
∫secxdx=lnsecx+tgx+C∫cscxdx=lncscx ctgx+C
dxx1
arctg=+C∫a2+x2aa
dxx a1
ln=∫x2 a22ax+a+C
dx1a+x
=∫a2 x22alna x+Cdxx
=+Carcsin∫a2 x2
a
π
2
n
dx2
sec=∫cos2x∫xdx=tgx+C
dx2
csc=∫sin2x∫xdx= ctgx+C
∫secx tgxdx=secx+C
∫cscx ctgxdx= cscx+C
ax
∫adx=lna+C
x
∫shxdx=chx+C∫chxdx=shx+C∫
dxx2±a2
=ln(x+x2±a2)+C
π
2
In=∫sinxdx=∫cosnxdx=
n 1
In 2n
∫∫∫
x2a22
x+adx=x+a+ln(x+x2+a2)+C
22x2a2
微积分
1.高等数学概念
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。 定义
设函数f(x)=0在[a,b]上有解,在[a,b]中任意插入若干个分点 a=x0 把区间[a,b]分成n个小区间 [x0,x1],...[xn-1,xn]。 在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和 如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I, 这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分, 记作 定积分 即: 展开式 编辑本段微积分学的建立 从微积分成为一门