椭圆型方程的差分方法
“椭圆型方程的差分方法”相关的资料有哪些?“椭圆型方程的差分方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“椭圆型方程的差分方法”相关范文大全或资料大全,欢迎大家分享。
椭圆型封头表面积计算公式
提供封头表面积计算方法
第 3期20 0 7年 7月
锅
炉
制
造
No 3 .
BOI R MANUF LE ACTURI NG
J 12 7 u. O0
文章编号: N 3—14 (0 7 0 0 6 0 C2 29 20 )3— 0 6— 4
椭圆封头表面积计算公式的讨论刘超平邱宗君陈莉蓉吴宗东,,,(. 1新疆时代石油工程有限公司,疆克拉玛依 84 0 2长庆油田生产运行处,西西安 7 0 2 )新 3 00;.陕 10 1
摘
要:通过对椭圆封头表面积的两个公式的推导及数值验算,出 J4 4 2 0得 B 7 6— 0 2给出的公式为精确计算公
式,并分析另一公式误差存在的原因及与影响误差大小的因素。 关键词:椭球;圆形封头;椭表面积;误差中图分类号:Q 5 T 02文献标识码: A
Dic so lulto r u a o l o d l s usin Cac a in Fo m l fEl ps i a i He d r S fc e a e ura e Ar aL u Ch o n i a pig’ QuZ o g n, hnLrn W o g o g i h nj’ C e i g, uZ n d n’ u o,
( . eD
椭圆型封头表面积计算公式
提供封头表面积计算方法
第 3期20 0 7年 7月
锅
炉
制
造
No 3 .
BOI R MANUF LE ACTURI NG
J 12 7 u. O0
文章编号: N 3—14 (0 7 0 0 6 0 C2 29 20 )3— 0 6— 4
椭圆封头表面积计算公式的讨论刘超平邱宗君陈莉蓉吴宗东,,,(. 1新疆时代石油工程有限公司,疆克拉玛依 84 0 2长庆油田生产运行处,西西安 7 0 2 )新 3 00;.陕 10 1
摘
要:通过对椭圆封头表面积的两个公式的推导及数值验算,出 J4 4 2 0得 B 7 6— 0 2给出的公式为精确计算公
式,并分析另一公式误差存在的原因及与影响误差大小的因素。 关键词:椭球;圆形封头;椭表面积;误差中图分类号:Q 5 T 02文献标识码: A
Dic so lulto r u a o l o d l s usin Cac a in Fo m l fEl ps i a i He d r S fc e a e ura e Ar aL u Ch o n i a pig’ QuZ o g n, hnLrn W o g o g i h nj’ C e i g, uZ n d n’ u o,
( . eD
差分方程模型
幻灯片1
第七章 差分方程模型
7.1 市场经济中的蛛网模型 7.2 减肥计划——节食与运动 7.3 差分形式的阻滞增长模型 7.4 按年龄分组的种群增长
幻灯片2
7.1 市场经济中的蛛网模型
供大于求
价格下降
减少产量
现 象
数量与价格在振荡
供不应求
增加产量
价格上涨
描述商品数量与价格的变化规律 问 题
商品数量与价格的振荡在什么条件下趋向稳定 当不稳定时政府能采取什么干预手段使之稳定
幻灯片3
蛛 网 模 型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系
yk?f(xk) 减函数
需求函数
供应函数
生产者的供应关系
增函数
xk?1?h(yk)
yk?g(xk?1)
y
f 0
x
g
f与g的交点P0(x0,y0) ~ 平衡点
y0
P0
x0
一旦xk=x0,则yk=y0,
xk+1,xk+2,…=x0, yk+1,yk+2, …=y0
幻灯片4
yk?g(xk?1)
yk?f(xk)
蛛 网 模 型
设x1偏离x0
xk?1?h(yk)
x1?y1?x2?y2?x3??
xk?x0,yk?y0
xk?x0,yk?y0
差分方程模型
幻灯片1
第七章 差分方程模型
7.1 市场经济中的蛛网模型 7.2 减肥计划——节食与运动 7.3 差分形式的阻滞增长模型 7.4 按年龄分组的种群增长
幻灯片2
7.1 市场经济中的蛛网模型
供大于求
价格下降
减少产量
现 象
数量与价格在振荡
供不应求
增加产量
价格上涨
描述商品数量与价格的变化规律 问 题
商品数量与价格的振荡在什么条件下趋向稳定 当不稳定时政府能采取什么干预手段使之稳定
幻灯片3
蛛 网 模 型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系
yk?f(xk) 减函数
需求函数
供应函数
生产者的供应关系
增函数
xk?1?h(yk)
yk?g(xk?1)
y
f 0
x
g
f与g的交点P0(x0,y0) ~ 平衡点
y0
P0
x0
一旦xk=x0,则yk=y0,
xk+1,xk+2,…=x0, yk+1,yk+2, …=y0
幻灯片4
yk?g(xk?1)
yk?f(xk)
蛛 网 模 型
设x1偏离x0
xk?1?h(yk)
x1?y1?x2?y2?x3??
xk?x0,yk?y0
xk?x0,yk?y0
差分方程模型
模型1 蛛网模型
经济背景与问题:在自 由市场经济中,有些商品的生产、销售呈现明显的周
期性。农业产品往往如此,在工业生产中,许多商品的生产销售是有周期性的,表现在:商品的投资、销售价格、产量、销售量在一定时期内是稳定的,因而整个某个较长的时期内这些经济数据表现为离散变量的形式。在这些因素中,我们更关心的是商品的销售价格与生产产量这两个指标,它们是整个经营过程中的核心因素,要想搞好经营,取得良好的经济效益,就必须把握好这两个因素的规律,作好计划。试分析市场经济中经营者根据市场经济的规律,如何建立数学模型来表现和分析市场趋势的。 模型假设与模型建立
将市场演变模式划分为若干段,用自然数n来表示; 设第n个时段商品的数量为
,价格为
,n=1,2….;
由于价格与产量紧密相关,因此可以用一个确定的关系来表现:即设有
(3. 3)
这就是需求函数,f 是单调减少的对应关系; 又假设下一期的产量
是决策者根据这期的价格决定的,即:设
,
h是单调增加的对应关系, 从而,有关系:
(3.4)
g 也是单调增加的对应关系. 因此可以建立差分方程:
(3.5) (3.6)
这就是两个差分方程。属
椭圆的标准方程
中学数学 高中二年级上学期第6课
椭圆-1主讲人
官琪
北京市第九中学
如何研究椭圆
如何研究椭圆(1)由椭圆曲线求它的方程
如何研究椭圆(1)由椭圆曲线求它的方程 (2)利用方程研究椭圆的性质
实验:绘制椭圆
实验:绘制椭圆将一条没有弹性的细绳的两端 拉开一段距离,分别固定在图板上 不同的两点 处,并用笔尖拉 紧绳子,再移动笔尖一周,这时笔 尖画出的轨迹是什么图形呢?
F1
F2
实验思考
实验思考(1)如果调整细绳两端的相对位 置,细绳的长度不变,猜想轨迹会 发生怎样的变化?
实验思考(2)如果调整细绳的长度,细绳 两端的相对位置不变,猜想轨迹会 发生怎样的变化?
实验思考(3)细绳两端的距离与绳长等于 或大于绳长,画出的图形还是椭 圆吗?还能画出图形吗?
CH03椭圆方程差分法CH3.1-3.7
根据东南大学戴嘉尊编写的《微分方程数值解》制作的PPT电子课件,供有需要的师生下载。
第三章 椭圆型方程的差分方法 3.1 正方形区域中的Laplace方程Dirichlet边值问 题的差分模拟 3.2 Neumann边值问题的差分模拟 3.3 混合边值条件 3.4 非矩形区域 3.5 极坐标形式的差分格式 3.6 矩形区域上的Poisson方程的五点差分逼近 的敛速分析 3.7 一般二阶线性椭圆型方程差分逼近及其性 质研究
根据东南大学戴嘉尊编写的《微分方程数值解》制作的PPT电子课件,供有需要的师生下载。
设 是平面中的具有边界的一个有界区域,本章 考虑如下椭圆型方程的差分解法: 2u 2u 2u u u (3.1) a x, y 2 2b x, y c x, y 2 d x , y , u , , x y x y x y
其中,系数a(x,y),b(x,y),c(x,y)满足 b 2 ac 0 x, y 对应方程(3.1)的定解问题有下面三类:第一边值问题,或称Drichlet问题 方程 3.1
CH03椭圆方程差分法CH3.1-3.7
根据东南大学戴嘉尊编写的《微分方程数值解》制作的PPT电子课件,供有需要的师生下载。
第三章 椭圆型方程的差分方法 3.1 正方形区域中的Laplace方程Dirichlet边值问 题的差分模拟 3.2 Neumann边值问题的差分模拟 3.3 混合边值条件 3.4 非矩形区域 3.5 极坐标形式的差分格式 3.6 矩形区域上的Poisson方程的五点差分逼近 的敛速分析 3.7 一般二阶线性椭圆型方程差分逼近及其性 质研究
根据东南大学戴嘉尊编写的《微分方程数值解》制作的PPT电子课件,供有需要的师生下载。
设 是平面中的具有边界的一个有界区域,本章 考虑如下椭圆型方程的差分解法: 2u 2u 2u u u (3.1) a x, y 2 2b x, y c x, y 2 d x , y , u , , x y x y x y
其中,系数a(x,y),b(x,y),c(x,y)满足 b 2 ac 0 x, y 对应方程(3.1)的定解问题有下面三类:第一边值问题,或称Drichlet问题 方程 3.1
示波器差分探头的校准方法
示波器差分探头的校准方法
刘红煜:示波器差分探头的校准方法 27
示波器差分探头的校准方法
TheCalibrationTechniqueofOscilloscopeDifferentialProbe
刘红煜
(中国电子科技集团公司第二十研究所计量站,陕西西安710068)
摘 要:随着测量信号速率的提高,差分信号变得越来越普遍,为了确保测量结果的准确性和可靠性,本文提出了对示波器差分探头的校准方法。关键词:差分探头;校准;方法
为了抑制信号中的共模噪声,示波器差分探头被广泛的使用,但是示波器差分探头是否准确对测量结果有
很大的影响,为了确保测量结果的准确性和可靠性,需要对示波器差分探头计量校准。国家对示波器计量检定/校准有相应的检定规程和校准方法,但对示波器差分探头计量校准却没有规定,因此本文提出了示波器差分探头计量校准方法,供同行参考。1 (1)共模抑制比;(2(3)围;(4)频带宽度;(5)(6)输入阻抗(包括电阻和电容)。
2 校准项目和校准方法
211
共模抑制比校准方法21111 共模抑制比(CMRR)的定义:在差分信号测量
路对称性越差,其共模抑制比就越小,抑制共模信号(干
扰)的能力也就越差。共模抑制比是一个与频率相关的参数,。21的校准
差分方程(word97-03)
差分方程及高等数学在经济学中的应用
前面我们所研究的变量基本上是属于连续变化的类型,但在经济管理或其它实际问题中,大多数变量是以数列形式变化的,如银行中的定期存款按所设定的时间等间隔计息,国家财政预算按年制定等。通常称这类变量为离散型变量。对这类变量,我们可以得到在不同取值点上的各离散变量之间的关系,如递推关系等。描述各离散变量之间关系的数学模型称为离散型模型。求解这类模型就可以得到离散型变量的变化规律。本章将介绍在经济学和管理科学中最常见的一种离散型数学模型——差分方程。
用数学方法解决实际问题,首先要构建该问题的数学模型,即找出该问题的函数关系。然后再用数学方法结合经济意义进行求解,解释经济意义,以期对经济运行进行分析干预。本章我们还将通过介绍几种常用的经济函数的建立及求解,以期引导学生掌握分析解决具体经济问题的思想方法。
§1 差分方程及其在经济学中的应用
本节主要介绍差分方程的概念、性质及求解。重点掌握一阶差分方程的求解。 一、差分的概念与性质
一般地,在连续变化的时间范围内,变量y关于时间t的变化率是用dy来刻画的;对离散型的变量y,
dt我们常取在规定的时间区间上的差商?y来刻画变量y的变化率。如果选择?t?1,则