一次函数反思点评
“一次函数反思点评”相关的资料有哪些?“一次函数反思点评”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一次函数反思点评”相关范文大全或资料大全,欢迎大家分享。
一次函数复习课反思
一次函数复习反思
一次函数复习课教学反思
——板桥中学 高燕萍
本节的教学是 新人教版八年级上册第十九章一次函数复习课。我本节课的设计思路是首先设计了一个实际的问题,让学生在解决问题的过程中不断回忆起有关本章节的相关知识点。然后让以小组的形式讨论,学生自己回忆并总结本章节的知识点,完成学案上相关的练习。紧接着以小组展示的形式归纳总结知识结构,最后将以练习的方式将前面所总结的知识进行实际应用。而小结的部分计划采用提问的方式进行来结束本堂复习课。
人们的学习往往从问题开始,因为这样的学习具有方向性与原动力。一节高质量的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。 但是一个教学设计是否优秀的标准就在于能否在实际教学中得到好的效果。而这就是我本节课存在的最大的问题。下面我将本节课的教学反思总结如下:
一、本节课存在的问题。
1、没有进行提前预习。时间间隔将近一个月,学生已遗忘大部分的知识。我没有安排学生提前预习,因此在课堂上学生一问三不知,大大降低了学生学习的自信心,也是教学变得寸步难行。
2、忽略了学生的实际情况,即没有进行学情分析。从
一次函数复习课反思
一次函数复习反思
一次函数复习课教学反思
——板桥中学 高燕萍
本节的教学是 新人教版八年级上册第十九章一次函数复习课。我本节课的设计思路是首先设计了一个实际的问题,让学生在解决问题的过程中不断回忆起有关本章节的相关知识点。然后让以小组的形式讨论,学生自己回忆并总结本章节的知识点,完成学案上相关的练习。紧接着以小组展示的形式归纳总结知识结构,最后将以练习的方式将前面所总结的知识进行实际应用。而小结的部分计划采用提问的方式进行来结束本堂复习课。
人们的学习往往从问题开始,因为这样的学习具有方向性与原动力。一节高质量的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。 但是一个教学设计是否优秀的标准就在于能否在实际教学中得到好的效果。而这就是我本节课存在的最大的问题。下面我将本节课的教学反思总结如下:
一、本节课存在的问题。
1、没有进行提前预习。时间间隔将近一个月,学生已遗忘大部分的知识。我没有安排学生提前预习,因此在课堂上学生一问三不知,大大降低了学生学习的自信心,也是教学变得寸步难行。
2、忽略了学生的实际情况,即没有进行学情分析。从
一次函数25.5 一次函数的应用
《一次函数》常考题一次函数的应用
解答题
151.(2004?福州)如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费) (1)根据图象分别求出l1,l2的函数关系式; (2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.
152.(2001?南京)某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,
(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;
(2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?
﹣3
153.(2002?大连)某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办了海产品运输业务.已知运输路程为120千米,
一次函数复习
临河八中“题组教学法”学案
§课题: 第19章一次函数复习(第一课时)
班级 学生姓名 小组 授课日期 学案编号 备课 教师 杨喜娥 授课 教师 审核 教师 课后 反思 教师寄语:如果知识不是每天在增加,就会不断地减少。 学生 目标一:通过简单实例,了解常量、变量的意义。 纠错 题组一、 1.圆周长公式C=2πR中,下列说法正确的是( ) (A)π、R是变量,2为常量 (B)C、R为变量,2、π为常量 (C)R为变量,2、π、C为常量 (D)C为变量,2、π、R为常量 2. 常量和变量是在“某一变化过程中”来研究确定的,以s=vt为例若速度v固定,则常量是________,变量是________; 目标二:能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 题组二、 1.下列各图给出了变量x与y之间的函数是( )。 y y y y o o o o x x x x CBDA 2. 下列关系式中,y不是x的函数关系的是( ) xA.y? B . y?2x2 C . y?x(x?0) D.y?
一次函数习题
寒假辅导习题练习(一):一次函数
第一部分:选择题
1.下列函数中,自变量x的取值范围是x≥2的是( ) A.y=2?x B.y=2.下面哪个点在函数y=
121x?2 C.y=4?x2 D.y=x?2〃x?2
x+1的图象上( )
A.(2,1) B.(-2,1) C.(2,0) D.(-2,0) 3.下列函数中,y是x的正比例函数的是( ) A.y=2x-1 B.y=
x3 C.y=2x2 D.y=-2x+1
4.一次函数y=-5x+3的图象经过的象限是( ) A.一、二、三 B.二、三、四 C.一、二、四 D.一、三、四
6.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )
A.k>3 B.0 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1 8.汽车开
一次函数教案
目录
第一篇:一次函数(一)教案 第二篇:一次函数性质教案 第三篇:教案-一元一次不等式与一次函数 第四篇:一次函数与一元一次不等式说课稿 教案及反思 第五篇:(新课程)高中数学 《2.2.1 一次函数的性质与图像》教案 新人教b版必修1 更多相关范文正文
第一篇:一次函数(一)教案
§11.2.2一次函数(一)教案2014-10-31伊通三中李金雪 一、教学目标
理解正比例函数的概念 掌握正比例函数解析式特点 二、教学重点
正比例函数解析式(请关注好 范 文 网气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y?与x的关系.
这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的值约是t的7倍与35的差.
2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.
3.某城市的市内电话的月收费额y(元)包括:月租费
一次函数复习
临河八中“题组教学法”学案
§课题: 第19章一次函数复习(第一课时)
班级 学生姓名 小组 授课日期 学案编号 备课 教师 杨喜娥 授课 教师 审核 教师 课后 反思 教师寄语:如果知识不是每天在增加,就会不断地减少。 学生 目标一:通过简单实例,了解常量、变量的意义。 纠错 题组一、 1.圆周长公式C=2πR中,下列说法正确的是( ) (A)π、R是变量,2为常量 (B)C、R为变量,2、π为常量 (C)R为变量,2、π、C为常量 (D)C为变量,2、π、R为常量 2. 常量和变量是在“某一变化过程中”来研究确定的,以s=vt为例若速度v固定,则常量是________,变量是________; 目标二:能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。 题组二、 1.下列各图给出了变量x与y之间的函数是( )。 y y y y o o o o x x x x CBDA 2. 下列关系式中,y不是x的函数关系的是( ) xA.y? B . y?2x2 C . y?x(x?0) D.y?
19.2.2一次函数(2)一次函数的图像和性质
提问复习 1、什么叫正比例函数、一次函数?它 们之间有什么关系? 一般地,形如 y=kx(k是常数,k≠0) 的函数, 叫做正比例函数; 一般地,形如 y=kx+b(k,b是常数,k≠0) 的函数,叫 做一次函数。
当b=0时,y=kx+b就变成了 y=kx ,所以说正 比例函数是一种特殊的一次函数。 2、正比例函数的图象是什么形状? 正比例函数的图象是(经过原点的一条直线
)
3、正比例函数 y=kx(k是常数,k≠0)中, k的正负对函数图象有什么影响?y=kx 图 象y
性 质经过一、三象限 y随x增大而增大
K>0y
x
K<0
x
经过二、四象限 y随x增大而减小
既然正比例函数是特殊的一次 函数,正比例函数的图象是直线, 那么一次函数的图象也会是一条直 线吗? 它们图象之间有什么关系? 一次函数又有什么性质呢?
探索新知1、认识一次函数的图像画图:请大家用描点法在同一坐标系中画出函数函数y=-2x, y=-2x+3,y=-2x-3的图象。
1、列表 x y=-2x
2、描点 … -2 … 4 -1 0
3、连线 2 … -2 -4 … 1 -1 … 1
25 -1
03
y=-2x+3 … 7 y=-2x-3 … 1
-3 -5 -7 …
比一比:正比例函
一次函数的图像和性质教学反思
篇一:一次函数图像教学反思
一次函数图像教学反思
一次函数图像>教学反思(一)
教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用 “ 两点确定一条直线 ” ,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。
根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出
一次函数与一元一次不等式教学反思
篇一:一次函数与一元一次不等式说课稿_教案及反思 2
一次函数与一元一次不等式说课稿
教材分析
1、地位和作用
这一节内容 在学生学习了前面一节一次函数后 通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。 ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。
③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
3、教学重点: (1).理解一元一次不等式与一次函数的转化关系及本质联系
(2).掌握用图象求解不等式的方法.
教学难点: 图象法求解不等式中自变量取值范围的确定.
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围