dc综合教程csdn
“dc综合教程csdn”相关的资料有哪些?“dc综合教程csdn”相关的范文有哪些?怎么写?下面是小编为您精心整理的“dc综合教程csdn”相关范文大全或资料大全,欢迎大家分享。
DC综合教程
启动dc的三种方法: DCSH: dc_shell TCL: dc_shell-t //注意:-t前没有空格 图形化界面: design_vision
tip1. 综合主要包括三个阶段:转换(translation)、优化 (optimization)与映射(mapping)。
1. 转换阶段:综合工具将高层语言描述的电路用门级的逻辑来实现,对于 Synopsys 的综合工具 DC 来说,就是使用 gtech.db库中的门级单元来组成 HDL 语言描述的电路,从而构成初始的未优化的电路。
2. 优化与映射:是综合工具对已有的初始电路进行分析,去掉电路中的冗余单元,并对不满足限制条件的路径进行优化, 然后将优化之后的电路映射到由制造商提供的工艺库上。 tip2
DesignWare 是集成在 DC综合环境中的可重用电路的集合
DesignWare 分为 DesignWare Basic 与 DesignWare Foundation,DesignWare Basic 提供基本的电路,DesignWare Foundation提供性能较高的电路结构。如果需要 Foundation的 DesignWare,需要在综合的时候设置syntheti
csdn
Jimy # )%(!3591148 # jimy@fjau.edu.cn wgsvc # ABab12 # wgsvc@263.net
Elkel # 123915 # ijrbhd@djfgkkyybnvddj.com Firing_Sky # huang513 # Firing_Sky@ynmail.com manager # cao # caokaichao@990.net haidong # shy75723 # eshyu@21cn.com PII # 51211314 # tlovexyj@163.net czhp # 40179 # czhp@sina.com
fbq # 20518 # qqccdd@163.net___csdn_1 sworder # 273114 # mac@aiatech.net
sunsun # 7341726 # sunsun@pub.xaonline.com cloudy # 651107 # xljg@163.net___csdn_1 lh # jaccet # sllihui@21cn.com___csdn_1 old_fox # jxxj # zxxf@990.net
menxin # xi
DC综合操作流程 - 设置流程 - 图文
总流程
1:库的设置 2:设计的读入 3:设置环境属性
(1)set_operating_conditions
(2)set_wire_load_model和set_wire_load_mode (3)set load
(4)set_drive或者set_driving_cell 4:设计规则约束
(1)set_max_transtion (2)set_max_capacitance (3)set_max_fanout 5:优化约束
(1)create_clock
(2)set_clock_uncertainty (3)set_clock_latency (4)set_input_delay (5)set_output_delay (6)set_false_path
(7)set_multicycle_path
(8)set_max_delay和set_min_delay (9)set_max_area
7:一些编译命令及DC的输出格式
注意: 1:在前端设计中一般不做hold_time的约束,hold_time的约束可以在后端修复!!!
总流程:
1:对库进行基本设置,如下:设置完成后应该查看.synopsy
利用DC进行逻辑综合_中文版
利用DC进行逻辑综合
一.综合流程以及约束的编写:
一般来说,集成电路的设计过程可分为前端设计(front end)和后端设计(back end)两个阶段。在前端设计阶段,根据用户需求,确定设计所要实现的功能和时序,并确定出具体的数字逻辑电路(schematic);在后端设计阶段,由电路逻辑图产生相应的电路版图(layout)。
1.1概述
芯片综合的过程:芯片的规格说明,芯片设计的划分,预布局,RTL逻辑单元的综合,各逻辑单元的集成,测试,布局规划,布局布线,最终验证等步骤。设计流程与思想概述:一个设计从市场需求到实际应用需要用运工程的概念和方法加以实现,这需要工程人员遵循一定的规则按一定的设计步骤进行操作。下面我们给出了一个设计工程通常的工作步骤(请参见设计流程图)。从图中可以看出对一个完整的设计流程来说,可以将工作划分为两个阶段:前段设计和后端设计。前端工作主要完成IC与通讯整机设计接口问题,以及整个IC的内部总体结构设计;而后端工作则主要是在前段设计的基础上,使用EDA工具,遵循设计流程,完成整个IC设计。
1.1.1逻辑综合简介
综合就是将设计的原始思想转化为可大规模生产的并可以执行预期功能的器件这一过程。长期以来,硬件描述语言(HDL)只是用
DC-DC高效电源 论文
高效率DC-DC电源
青岛理工大学
一组 王志强 吴兆锋 刘少朋
摘 要
此系统为了实现高效率DC-DC电源,稳定输出电压和输出电流,选择STM32F103单片机作为核心芯片,同时采用TPS5430和AP1609开关电源转换芯片以及LM1117芯片作为辅助电源控制系统,以IRF540N作为开关管,以IR2101驱动芯片实现开关管的驱动。实现了按键设定、液晶显示等功能。设计了Sepic拓扑下的DC-DC模块,实现了9V供电转换为5V的电压变换功能,同时输出电压纹波小于2%,输出电压为5V时电源效率高于85%,输出电压为2V时电源效率高于75%。当输入电流恒定时,当输入电压从6V到12V变化时,保持输入电流恒定在1A;调整时间不超过1s。此系统具有调整速度快,精度高,功耗低,负载调整率低,效率高等优点。
关键词:STM32 直流-直流变换电源 IRF540N Sepic斩波电路
Abstract
This system aim at achieving the high efficiency DC-DC power, stabilizing the output voltage and the output current, choosing
DC-DC高效电源 论文
高效率DC-DC电源
青岛理工大学
一组 王志强 吴兆锋 刘少朋
摘 要
此系统为了实现高效率DC-DC电源,稳定输出电压和输出电流,选择STM32F103单片机作为核心芯片,同时采用TPS5430和AP1609开关电源转换芯片以及LM1117芯片作为辅助电源控制系统,以IRF540N作为开关管,以IR2101驱动芯片实现开关管的驱动。实现了按键设定、液晶显示等功能。设计了Sepic拓扑下的DC-DC模块,实现了9V供电转换为5V的电压变换功能,同时输出电压纹波小于2%,输出电压为5V时电源效率高于85%,输出电压为2V时电源效率高于75%。当输入电流恒定时,当输入电压从6V到12V变化时,保持输入电流恒定在1A;调整时间不超过1s。此系统具有调整速度快,精度高,功耗低,负载调整率低,效率高等优点。
关键词:STM32 直流-直流变换电源 IRF540N Sepic斩波电路
Abstract
This system aim at achieving the high efficiency DC-DC power, stabilizing the output voltage and the output current, choosing
S7-200 PLC DC224XP DC DC DC的接线图说明
对如何进行S7-200 DC 224XP DC DC DC的接线图的相关说明。说明为什么要这么接线,接线原理是什么。
S7-200 DC224XP DC DC DC的接线图说明
如上图中:“DC DC DC”表示输入输出均是直流,即是晶体管输出型。下半为输入端,上半为输出端。
一、输入端说明
(1)输入端的每一个I口的公共端(在PLC内部我们无法看到)是接在一起的M,只需要接PLC本身的负极电源即可(即下半部的1M是I0.0~I0.7的公共端,接到其最右端的M 上则PLC这几个输入点的M点就都接到了电源的V-上了;而2M是I1.0~I1.5的公共端,接到其最右端的M 上则PLC这几个输入点的M点就都接到了电源的V-上了)。
(2)而PLC I口的接线端(就是我们能看到的接线的那些孔)与控制信号源,如按钮接到一起后再接到PLC下半部最右端的L+上即可构成一个通过按钮控制的闭合回路,从而当按下按钮时给一个输入信号。
二、输出端说明
输出端每个端口相当于内部E极接在一起的三极管的C极。接在一起的E极与外部电源V+接在一起,也就是每一组端口的L+。C极就是输出点,其与负载一端相接,负载另一端接到外部电源V- 上,也就是每一组的M端。 注意西门子PLC输出点晶体
双向DC-DC变换器
双向DC-DC变换器
摘要:以FPGA和TM4C123G为控制核心,设计制作了双向DC-DC变换器。本系统主要包括Buck/Boost双向DC-DC变换电路、电压电流采样电路和辅助电源电路等,其中以Buck/Boost变换电路为核心,完成锂电池组的充、放电,采用闭环反馈系统,实时监测锂电池组的电压、电流,经过PID调节,控制输出PWM波,从而控制Buck/Boost变换电路。经测试,变换器可实现恒流充电,且充电电流在1~2A内可调,步进值可设定,电流控制精度eic?0.12%,测量精度
em?0.192%,变换器充电效率?1?98.54%,放电效率?2?97.99%,且系统具有过充保护功能,阈值电压U1th?(24?0.032)V,能自动转换工作模式并保持
U2?(30?0.010)V。经称量,双向DC-DC变换器、测控电路与辅助电源三部分总重量为368g。此外,系统可识别充电、放电两种模式,并实时显示充、放电的电流与电压,人机交互性良好。
关键词:BDC;锂电池;PWM;PID;过充保护
1 方案论证
1.1 方案比较与选择
1.1.1 双向DC-DC主回路
方案一:非隔离式Buck/Boost BDC
直流-直流(DC DC)变换器
直流-直流(DC/DC)变换器
变换释义
DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制
(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
(4)Cuk电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。
还有Sepic、Zeta电路。 上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。 编辑本段变换发展
当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300
DC-DC变换器原理
DC-DC变换器原理 DC/DC Converter Principle
最新文章
一菜多味 看茄子的72变! 2014又出新出土的给力新词 令人惊艳的民国时期真女神 高考万能作文开头50篇 基层干部不作为乱作为自查报
为直流电源使用呢,对于对电压没有准确要求的微、小型用电设备是可以的,如计算器、玩具等。太阳电池输出电压取
大小与光照强度直接有关,不能直接作为正规电源使用。通过DC-DC变换器可以把太阳电池输出的直流电转换成稳定
是直流——直流变换器,是太阳能光伏发电系统的重要组成部分,下面就其原理作简单介绍。
这样画风景不真实,但是很美
)工作方式,基本原理是通过开关管把直流电斩成方波(脉冲波),通过调节方波的占空比(脉冲宽度与脉冲周期之比)
1左上部是一个斩波基本电路,Ud是输入的直流电压,V是开关管,UR是负载R上的电压,开关管V把输
T,在V导通时输出电压等于Ud,导通时间为ton,在V关断时输出电压等
1下部绿线为连续输出波形,其平均电压如红线所示。改变脉冲宽度即可改变输
UR1)较高;在时间t1 后脉冲变窄,平均电压(UR2)降低。固定方波周期T不变,改变占空比调节输出电
Buck变换器。
图1 DC-DC变换基本原理
2是加有LC滤波的电