电磁感应与动量定理结合例题

“电磁感应与动量定理结合例题”相关的资料有哪些?“电磁感应与动量定理结合例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“电磁感应与动量定理结合例题”相关范文大全或资料大全,欢迎大家分享。

电磁感应动量定理的应用

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

电磁感应与动量的综合

1.安培力的冲量与电量之间的关系:

设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力为变力,但其冲量可用它对时间的平均值进行计算,即I冲?F安?t

而F=BIL(I为电流对时间的平均值) 故有:安培力的冲量I冲?BIL??t 而电量q=IΔt,故有I冲?BLq

因只在安培力作用下运动 BLq=mv2-mv1 q??P BLE??t?R??B?SBLx??若磁感应强度是匀强磁场,q? RRR2.感应电量与磁通量的化量的关系:q?I??t?n???t??t?n?? RR以电量作为桥梁,把安培力的冲量、动量变化量与回路磁通量的变化量、导体棒的位移联系起来。

例1.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a

A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能

例2.在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d ,电阻不计,导体棒AB垂直于导轨放置,质量为m,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B。现给导体棒一水平初

电磁感应中动量定理和动量守恒定律的运用

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

.

. 高考物理电磁感应中动量定理和动量守恒定律的运用

(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。

(2)棒在cd处的加速度。

(2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈

A.完全进入磁场中时的速度大于(v0+v)/2

B.完全进入磁场中时的速度等于(v0+v)/2

C.完全进入磁场中时的速度小于(v0+v)/2

D.以上情况均有可能

(3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面

动量与电磁感应

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

动量与电磁感应

电磁感应与动量的结合主要有两个考点:

对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理F安?t??P,而又由于F安?t?BIL?t?BLq,q?N杆位移x及速度变化结合一起。

对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多 1. 如图所示,一质量为m 的金属杆ab,以一定的初速度v0从一光滑平行金属轨道的底端向上滑

行,轨道平面与水平面成θ角,两导轨上端用一电阻相连,磁场方向垂直轨道平面向上,轨道与金属杆ab的电阻不计并接触良好。金属杆向上滑行到某一高度h后又返回到底端,在此过程中( )

A. 整个过程中合外力的冲量大小为2mv0

B. 下滑过程中合外力所做的功等于电阻R上产生的焦耳热

a b h B R ??BLx=N,?P?mv2?mv1,由以上四式将流经杆电量q、R总R总12C. 下滑过程中电阻R上产生的焦耳热小于mv0?mgh

2D. 整个过程中重力的冲量大小为零

? 2. 如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个

边长为a(a﹤L)

电磁感应经典物理例题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

物理作业

1.在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º。一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。

解 :B1=5πM/6qt B2=5πM/3qt

2.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外。P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点。A是一块平行于x轴的挡板,与x轴的距离为h/2,A的中点在y轴上,长度略小于a/2。带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变。质量为m,电荷量为q(q>0)的粒子从P点瞄准N0点入射,最后又通过P点。不计重力。求粒子入射速

度的所有可能值。

解析:设粒子的入射速度为v,第一次射

出磁场的点为,与板碰撞后再次进入磁场的位置为N1.粒子在磁场中运动的轨道半径为R,有

粒子速率不变,每次进入磁场与射出磁场

N

电磁感应典型例题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

电磁感应

一、用楞次定律解题

1. 如图中(a),圆形线圈P静止在水平 桌面上,其正上方悬挂一相同的线圈Q,P 和Q共轴,Q中通有变化电流,电流随时间 变化的规律如图4—4(b)所示,P所受的重力 为G,桌面对P的支持力为N,则不成立是 B

A.t1时刻N>G B.t2时刻N>G C.t3时刻N<G D.t4时刻N=G

2. 如图,线圈M和线圈N绕在同一铁芯上。M与电源、开关、滑动变阻器相连,P为滑动变阻器的滑动端,开关S处于闭合状态。N与电阻R相连。下列说法正确的是 AD A.当P向右移动,通过R的电流为b到a

B.当P向右移动,通过R的电流为a到b

C.断开S的瞬间,通过R的电流为b到a D.断开S的瞬间,通过R的电流为a到b 二、感应电动势和感应电流的产生

3. 如图8所示,RQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E.F分别为PS和PQ的中点,关于线框中的感应电流 B

A.当E点经过边界MN时,感应电流最大 B.当P点经过边界MN时,感应电流最大 C.当F点经过边界MN时,感应电流最大 D.当Q点经过边界MN时,感应电流最大

4. 如

电磁感应与交流电5

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

电磁感应与交流电5

1、线圈ab、cd绕在同一软铁芯上。在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图所示。已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是 ( )

2、如图,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是( )

3、如图所示为两个互感器,在图中圆圈内a、b表示电表,已知电压比为100,电流比为10,电压表的示数为220V,电流表的示数为10A,则( ) A.a为电流表,b为电压表 B.a为电压表,b为电流表

C.线路输送电功率是2200W D.线路输送电功率是2.2×106W

a b

1

4、如图甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一阻

电磁感应与法拉第的故事

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

篇一:法拉第与电磁感应定律

法拉第与电磁感应定律

摘要:法拉第,在科学史上做出杰出贡献的实验物理学家,他是名副其实的穷二代,凭借高于常人的智商和自己坚持不懈的努力成为了举世闻名的科学家,他不只是在电磁学中引入了电场线和电磁感应线,这使得后人能更清楚、形象地理解电磁场。他最突出的成就就是发现了电磁感应定律,不但促进了科学的发展而且还开创了人类美好生活的新时代,为人类带来了丰富的物质和精神财富。

关键词:法拉第、电磁感应定律、应用、学习、感应电流

0引言

在21世纪的新时代,法拉第电磁感应定律的运用遍及人类生活的很多方面并使我们的生活越来越便捷,享受着这个时代独有的幸福的同时,我们便更想探索法拉第电磁感应定律具体应用在哪些方面,更想知道到底是什么样的天才发现了这样神奇的定律。本篇论文选择了对近代物理学做出了杰出贡献的英国科学家法拉第的生平进行全面的分析,并综述了电磁感应定律在科技史上的地位。文中有历史、人物和科学的发展过程。

1法拉第简介

1.1法拉第的家庭背景

法拉第,一个自学成才的理工男。1971年9月22日这个未来著名的物理学家呱呱坠地,他是家里的第三个儿子,他的家庭贫困,父亲是一个铁匠,靠着自己勤劳的双手养家糊口,收入甚微,入不敷出。所以,“富二代”、官

电磁感应复习

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

电磁感应复习

1.楞次定律

感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

楞次定律解决的是感应电流的方向问题。它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。前者和后者的关系不是“同向”或“反向”的简单关系,而是“增反减同”的关系。

2.对“阻碍”意义的理解:

(1)阻碍原磁场的变化。“阻碍”不是阻止,而是“延缓”(2)阻碍的是磁通量的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.

(3)阻碍不是相反(4)由于“阻碍”,导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.

3.楞次定律的应用步骤

楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。

4.解法指导:(1)运用楞次定律处理问题的思路 (a)判断感应电流方向类问题的思路

运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为: ①明确原磁场:弄清原磁场的方向及磁通量的变化情况.

②确定感应磁场:即根据楞次定律中的\阻碍\

电磁感应现象

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

电磁感应现象

教学目的:1、启发学生观察实验现象,从中分析归纳通过磁场产生电流的条确件,理解电

磁感应现象本质。

2、培养学生运用所学知识,独立分析问题的能力。

3、启发学生观察实验现象从中分析感应电流的方向与磁场方向和导线运动方向有关;掌握右手定则

教学重点:感应电流的产生条件的得出。 教学难点:正确理解感应电流的产生条件。 教学关键:实验演示。

教学仪器:电池组,电键,导线,大磁针,矩形线圈,碲形磁铁,条形磁铁,原副线圈,演

示用电流表等。

教学过程: 新课引入:

演示实验:奥斯特实验 提问引导:(1)这个实验说明了什么? (2)这个实验架起了一座连通电和磁的桥梁,此后人们对电能生磁已深信不疑,

但沿相反方向能否走通呢?即磁能否生电呢?

引入新课:我们这节课就来研究这个问题——电磁感应现象 新课教学:

1、引言:在磁可否生电这个问题上,英国物理学家法拉第坚信,电与磁决不孤立,有着密切的联系。为此,他做了许多实验,把导线放在各种磁场中想得到电流需要一定的条件,他以坚韧不拔的意志历时10年,终于找到了这个条件,从而开辟了物理学又一崭新天地。 2、

电磁感应(一)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

电磁感应(一)

12-1-1. 如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I以顺时针方向为正)

I

[ ]

(A) O I (C)O

12-1-2. 一无限长直导体薄板宽为l,板面与z轴垂 直,板的长度方向沿y轴,板的两侧与一个伏特计相接,

?? v ?BI (B) tOIO(D) t t t

z V ?B ??如图.整个系统放在磁感强度为B的均匀磁场中,B的

?方向沿z轴正方向.如果伏特计与导体平板均以速度v (A) 0. (B)

y 向y轴正方向移动,则伏特计指示的电压值为 l 1vBl. 2 (C) vBl. (D) 2vBl. [ ]

12-1-3. 如图所示,矩形区域为均匀稳