证明线面平行的常用方法
“证明线面平行的常用方法”相关的资料有哪些?“证明线面平行的常用方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“证明线面平行的常用方法”相关范文大全或资料大全,欢迎大家分享。
线面平行证明的常用方法
线面平行证明的常用方法 张磊
立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:
方法一:中位线型:找平行线。
例1、如图⑴,在底面为平行四边形的四棱锥P ABCD中,点E是PD的中点.求证:PB//平面AEC
方法二:构造平行四边形,找平行线
AE//平面DCF.
分析:过点E作EG//AD交FC于G, DG就是平面AEGD
与平面DCF的交线,那么只要证明AE//DG即可。
例2、如图⑵, 平行四边形ABCD和梯形BEFC所在平面相交,BE//CF,求证:
方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已
知平面平行的平面
例3、如图⑷,在四棱锥O ABCD中,底面ABCD为菱形, M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD
分析::取OB中点E,连接ME,NE,只需证平面MEN平面OCD。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。
例4、已知正方形ABCD和正方形ABEFAC和BF上,且AM=FN. 求证:MN‖平面BCE.
如图⑷
线面平行证明的常用方法
线面平行证明的常用方法 张磊
立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨:
方法一:中位线型:找平行线。
例1、如图⑴,在底面为平行四边形的四棱锥P ABCD中,点E是PD的中点.求证:PB//平面AEC
方法二:构造平行四边形,找平行线
AE//平面DCF.
分析:过点E作EG//AD交FC于G, DG就是平面AEGD
与平面DCF的交线,那么只要证明AE//DG即可。
例2、如图⑵, 平行四边形ABCD和梯形BEFC所在平面相交,BE//CF,求证:
方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已
知平面平行的平面
例3、如图⑷,在四棱锥O ABCD中,底面ABCD为菱形, M为OA的中点,N为BC的中点,证明:直线MN‖平面OCD
分析::取OB中点E,连接ME,NE,只需证平面MEN平面OCD。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。
例4、已知正方形ABCD和正方形ABEFAC和BF上,且AM=FN. 求证:MN‖平面BCE.
如图⑷
线面平行的常用判断法
线面平行的常用判断法
空间直线与平面平行问题是立体几何的一个重要内容,也是高考考查的重点,下面就常见的线面平行的判定方法介绍如下:
一、反证法
例1求证:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(直线与平面平行的判定定理)
已知:a??,b??,a∥b,如图1. 求证:a∥?.
分析:要证明直线与平面平行,可以从直线与平面平行的定义入手,但从定义来看,必须说明直线与平面无公共点,这一点直接说明是困难的,但我们可以借助反正法来证明.
证明:假设直线a与平面?不平行,又∵a??,∴a下面只要说明a??A.
a
??A不可能即可.
∵a∥b,∴a,b可确定一平面,设为?. 又a??A, ∴A?a,A??.
b
A
?
图1
又b??,A??,
∴平面?与平面?中含有相同的元素直线b,以及不在直线b上的点A, 由公理2的推论知,平面?与平面?重合. ∴a??,这与已知a??相矛盾. ∴a二、判定定理法
例2 正方体AC1中,E、G分别为BC、C1D1的中点,求证:EG∥平面B1BDD1 分析:要证明EG∥平面B1BDD1,根据线面平行的判定定理,需在平面B1BDD1内找到一条与EG平行的直线,充分借助E、G为中点的
线面平行与面面平行(教案)
线面平行与面面平行(教案)
§50. 线面平行与面面平行(教案)
一、复习目标
1、掌握直线与平面、平面与平面平行的定义、判定定理、性质定理,并能运用这些知识进行论证或解题.
2、理解线线平行,线面平行,面面平行之间的关系,能进行三者之间的转化.
二、课前预习
1、若直线l∥平面 ,则下列命题中,正确的是( )
A、l平行于 内的所有直线 B、l平行于过l的平面与 的交线
C、l平行于 内的任意直线 D、l平行于 内的唯一确定的直线 解:B
2、 、 表示平面,a、b表示直线,则a∥ 的充分条件是( )
A、 ⊥ ,且a⊥ B、 ∩ =b,且a∥b C、a∥b,且b∥ D、 ∥ ,且a 解:D
3、已知a、b为异面直线,且a⊥ ,b⊥ ,则平面 与平面 的位置关系是
A、 ∥ B、 与 相交 C、 与 重合 D、 与 关系不确定 解:B
4、已知直线a、b,平面α、β、γ,有下面四个命题
①若a⊥α,a⊥β,则α∥β.②若a∥α,b∥β,a∥β,a∥b,则α∥β. ③若α∥γ,β∥γ,则α∥β④若α∩γ=a.β∩γ=b且a∥b,则α∥β. 其中正确的命题是 ( )
A、①与② B、①与
专题复习 证明线段相等角相等的基本方法(一)
专题复习 证明线段相等角相等的基本方法(一)
一、教学目标:
知识与技能:使学生掌握根据角和线段位置关系如在一个三角形中或在两个三角形中,利用等边对等角、或三角形全等证明角相等线段相等的基本方法.
过程与方法:使学生在根据角或边的位置关系确定证明角相等或线段等的方法过程中,体验证明角相等线段相等的基本方法,在交流的过程中感受和丰富学生的学习经验;培养学生推理论证能力.
情感态度与价值观:激活学生原有的知识与经验,使每个学生按照自己的习惯进行提取、存储信息,形成不同的认知结构,优化学生的思维品质,获得不同的发展.
二、教学重点:
掌握根据角和线段位置关系确定证明角相等线段相等的基本方法. 教学难点:
分析图形的形状特征,识别角或线段的位置关系,确定证明方法. 三、教学用具:三角板、学案等 四、教学过程: (一)引入:
相等的线段和角是构成特殊几何图形的主要元素,也是识别特殊图形的主要依据;运用三角形全等证明线段相等角相等,常出现在中考15题左右的位置,是北京市中考必考内容;运用全等三角形的知识寻求经过图形变换后得到的图形与原图形对应元素间的关系,常与特殊图形结合,出现在综合题中.
(二)例题:
例1已知:如图1,△ABC中,AB=AC,BC为
线面平行与面面平行(教案)
线面平行与面面平行(教案)
§50. 线面平行与面面平行(教案)
一、复习目标
1、掌握直线与平面、平面与平面平行的定义、判定定理、性质定理,并能运用这些知识进行论证或解题.
2、理解线线平行,线面平行,面面平行之间的关系,能进行三者之间的转化.
二、课前预习
1、若直线l∥平面 ,则下列命题中,正确的是( )
A、l平行于 内的所有直线 B、l平行于过l的平面与 的交线
C、l平行于 内的任意直线 D、l平行于 内的唯一确定的直线 解:B
2、 、 表示平面,a、b表示直线,则a∥ 的充分条件是( )
A、 ⊥ ,且a⊥ B、 ∩ =b,且a∥b C、a∥b,且b∥ D、 ∥ ,且a 解:D
3、已知a、b为异面直线,且a⊥ ,b⊥ ,则平面 与平面 的位置关系是
A、 ∥ B、 与 相交 C、 与 重合 D、 与 关系不确定 解:B
4、已知直线a、b,平面α、β、γ,有下面四个命题
①若a⊥α,a⊥β,则α∥β.②若a∥α,b∥β,a∥β,a∥b,则α∥β. ③若α∥γ,β∥γ,则α∥β④若α∩γ=a.β∩γ=b且a∥b,则α∥β. 其中正确的命题是 ( )
A、①与② B、①与
2.2.3_线面平行的性质定理
2.2.3 线面平行的性质定理
必修2
第二章
点、直线、平面之间的位置关系
复习1:直线和平面的位置关系1、直线和平面有哪几种位置关系? 平行、相交、直线在平面内 2、反映直线和平面三种位置关系的依据是什么? 公共点的个数 1.直线在平面内——有无数个公共点; 2.直线与平面相交——有且只有一个公共点; 3.直线与平面平行——没有公共点。
复习2:面面平行的判定定理判定定理:平面外一条直线与此平面内一条直线平行,则该 直线与此平面平行.(线线平行,线面平行)
具备的条件是: 一线在平面外,一线在平面内;两直线互相平行。必修2 第二章 点、直线、平面之间的位置关系
思考:如果一条直线与平面平行,那么这条直线是否与这平面内的所有直线都 平行?a c
b
那么直线a会与平面 内那些线平行呢?必修2 第二章 点、直线、平面之间的位置关系
思考: 教室内日光灯管所在直线与地面平行,如何在地面上作一条直线与灯 管所在的直线平行? 怎样作平行 线?
l
a
a
如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 试用文字语言将上述原理表述成一个命题. 平行.必修2 第二章 点、直线、平面之间的位置关系
探研新知
已知:如图,a∥α , a β ,α
2.2.3_线面平行的性质定理
2.2.3 线面平行的性质定理
必修2
第二章
点、直线、平面之间的位置关系
复习1:直线和平面的位置关系1、直线和平面有哪几种位置关系? 平行、相交、直线在平面内 2、反映直线和平面三种位置关系的依据是什么? 公共点的个数 1.直线在平面内——有无数个公共点; 2.直线与平面相交——有且只有一个公共点; 3.直线与平面平行——没有公共点。
复习2:面面平行的判定定理判定定理:平面外一条直线与此平面内一条直线平行,则该 直线与此平面平行.(线线平行,线面平行)
具备的条件是: 一线在平面外,一线在平面内;两直线互相平行。必修2 第二章 点、直线、平面之间的位置关系
思考:如果一条直线与平面平行,那么这条直线是否与这平面内的所有直线都 平行?a c
b
那么直线a会与平面 内那些线平行呢?必修2 第二章 点、直线、平面之间的位置关系
思考: 教室内日光灯管所在直线与地面平行,如何在地面上作一条直线与灯 管所在的直线平行? 怎样作平行 线?
l
a
a
如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 试用文字语言将上述原理表述成一个命题. 平行.必修2 第二章 点、直线、平面之间的位置关系
探研新知
已知:如图,a∥α , a β ,α
怎样证明线段成比例
怎样证明线段成比例
【知识要点】
本章节中,所要介绍的线段成比例的证明方法,主要有以下几种:
(1)利用相似三角形的对应边成比例法证。思路是:把待证的四条线段视为两个三角形的边,从而把问题转化为证两个三角形相似。
(2)用等线代换法证:若所要证的比例式中的线段不是两个三角形的边,可把比例式中的线段换成与它相等的线段,这四条线段都在两个三角形中,证这两个三角形相似。 (3)用等比代换法去证:若a,b,c,d是四条线段,欲证
ab?cd,可先证得
ab?ef(e,f是两条线段)然后证
ef?cd,这里把
ef叫做中间比。
【典型例题】
例1 如图,在?ABC中,D是BC的中点,E是AC上一点,连DE并延长交BA延长线于F,且ED=FE,AD∥FD交BC于G,DH∥BA交AC于H,求证:GD:CD=DH:FB。
A 3
E 2 H 1 C
F
B G D
例2 如图,已知Rt?ABC中,?ACB?90?,CD?AB于D,E是BC的中点,连结ED并延长交CA的延长线于F,求证:
A 1 2 F E 3 B
P D
4 C
C ACDF?BCCF。
B E 2 1 D 3 A F 例3 已知,如图,在?ABC中,AB=AC,AD是中线,
人教版立体几何线面平行
第1题. 已知 a, m, b,且m// ,求证:a//b.
答案:证明:
答案:证明:连结AF并延长交BC于M.连结PM,
m
m// m//a a//b.
a 同理 m//b
BFMFPEBFPEMF
,又由已知,∴.
FDFAEAFDEAFA
由平面几何知识可得EF//PM,又EF PBC,PM 平面PBC, ∴EF//平面PBC.
∵AD//BC,∴
第4题. 如图,长方体ABCD A1B1C1D1中,E1F1是平面A1C1上的线段,求证:E1F1//平面AC.
答案:证明:如图,分别在AB和上截取AE A1E1,DF D1F1,连接EE1,FF1,EF.
第2题. 已知: b,a// ,a// ,则a与b的位置关系是(
A.a//b B.a b C.a,b相交但不垂直 D.a,b异面
答案:A.
第3题. 如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且
∴A1E1平行且等于AE,D1F1平行且等于DF,
故四边形AEE1A1,DFF1D1为平行四边形.
∴EE1平行且等于AA1,FF1平行且等于DD1. ∵AA1平行且等于DD1,∴EE1平行且等于FF1,
四边形