特殊平行四边形综合题
“特殊平行四边形综合题”相关的资料有哪些?“特殊平行四边形综合题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“特殊平行四边形综合题”相关范文大全或资料大全,欢迎大家分享。
平行四边形在综合题中的应用(4)
2017年08月06日风的初中数学组卷
一.解答题(共25小题)
1.如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点. (1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标; (2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?
2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B. (1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N
平行四边形
19.2 平行四边形(第一课时)
教学目标:
知识与技能:
1、理解并掌握平行四边形的定义;
2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力
过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理
的能力。
情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际
应用价值。
重点、难点:
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.
教具准备:图片、三角板 课时安排:一课时 教学过程:
一、导入新课
引入:
等,都是平行四边形,平行四边形有哪些性质呢?
什么是平行四边形? 平行四边形的定义:
(1)定义: 两组对边分别平行的四边形叫做平行四边形。
在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本
(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形
(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”
平行四边形与特殊的平行四边形练习题勿删
平行四边形与特殊的平行四边形练习题
一、选择题
1.下列命题中,正确的是( )
A.平行四边形的对角线相等 B.矩形的对角线互相垂直 C.菱形的对角线互相垂直且平分 D.梯形的对角线相等
2.下列说法中,正确的是( ) A . 同位角相等
C . 四条边相等的四边形是菱形
∠1=∠2 A.
4.在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( ) 9 A. 24 A.
B. 16
C. 4
D. 2
第3题
这个四边形是平行四边形的是
A.AB//DC,AD//BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB//DC,AD=BC
10.如图2,点E是平行四边形ABCD的边CD的中点,AD、BE的延长线相交于点F,
DF=3,DE=2,则平行四边形ABCD的周长为
A. 5 B. 7 C.10
D. 14
B. 对角线相等的四边形是平行四边形 D. 矩形的对角线一定互相垂直
3.如图,在平行四边形ABCD中,下列结论中错误的是( )
B. ∠BAD=∠BCD
C. AB=CD
特殊平行四边形拓展提高题
特殊的平行四边形拓展提高题精选(1)
1.在一张边长为1的正方形纸片ABCD中,对折的折痕为EF,再将点C折到折痕EF上,落在点N的位置,折痕为BM,则EN的长为 。
解: ?正方形ABCD边长为1,EF为折痕,?在Rt?BFE中,BF?1232,NF?1?()?222123
EN?EF?FN?1?
2.如图,将边长为3的正方形ABCD,绕点C按顺时针方向旋转30度后,得到正文形EFCG,EF交AD于点H,则DH长是多少? 解:如图,连接CH,∵正方形ABCD绕点C按顺时针方向旋转30°,∴∠BCF=30°,则∠DCF=60°, 在Rt△CDH和Rt△CFH中,CF=CD,HC=HC∴Rt△CDH≌Rt△CFH(HL), ∴∠DCH=∠FCH=∠DCF=30°,∴在Rt△CDH中,设HD=x,则HC=2x,得:(2x)?x?3?x?2223即DH?3 3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠EAB,则∠EAC的度数为 。 解:∵四边形ABCD是矩形,AC、BD是矩形的对角线, ∴OA=OB,∴∠BAC=∠ABD,
∵∠DAE=3∠BAE,∠DAE+
特殊平行四边形练习题
特殊平行四边形复习练习 姓名
一、基础知识点复习: (一)矩形:
1、矩形的定义:__________________________的平行四边形叫矩形.
2、矩形的性质:①.矩形的四个角都是______;矩形的对角线__________________________. ②.矩形既是 对称图形,又是 图形,它有 条对称轴. 3、矩形的判定:①.有_____个是直角的四边形是矩形.
②.对角线____________________________的平行四边形是矩形. ③.对角线________________________________的四边形是矩形.
4、练习:①已知:矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,
则矩形对角线AC长为______cm. ②四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是( ) A.AO=CO,BO=DO B.AO=BO=CO=DO
C.AB=BC,AO=CO D.AO=CO,BO=DO
特殊的平行四边形(提高)知识讲解
特殊的平行四边形(提高)
【学习目标】
1. 理解矩形、菱形、正方形的概念.
2. 掌握矩形、菱形、正方形的性质定理与判定定理.
3. 了解平行四边形、矩形及菱形与正方形的概念之间的从属关系. 【要点梳理】
要点一、矩形、菱形、正方形的定义
有一个角是直角的平行四边形叫做矩形. 有一组邻边相等的平行四边形叫做菱形.
有一组邻边相等并且有一个内角是直角的平行四边形 叫做正方形. 要点二、矩形、菱形、正方形的性质
矩形的性质:1.矩形具有平行四边形的所有性质;
2.矩形的对角线相等;
3.矩形的四个角都是直角;
4.矩形是轴对称图形,它有两条对称轴.
菱形的性质:1.菱形的四条边都相等;
2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; 3.菱形是轴对称图形,它有两条对称轴.
正方形的性质:1.正方形四个角都是直角,四条边都相等.
2.正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.
要点三、矩形、菱形、正方形的判定
矩形的判定:1. 有三个角是直角的四边形是矩形.
2. 对角线相等的平行四边形是矩形.
3. 定义:有一个角是直
特殊的平行四边形复习导学案
特殊平行四边形复习导学案
一、 学习目标
1、 自主复习教材94-101页,10分钟之后能够口述所有相关性质、判定、定理;
2、 能够运用相关性质、定理准确的判断特殊的四边形
二、 学习过程
(一) 性质、判定填空
1
、
2、矩形性质:a、矩形对边______,邻边________;b、矩形的四个角都是___________;
c、矩形的对角线_________且互相_________;
d、对称性:矩形既是______图形又是________图形
矩形判定:a、有一个角是_______的平行四边形是矩形;b、三个角是________的四边形是
矩形;c、对角线_____的平行四边行是矩形;d、对角线______且______的四
边形是矩形。
3、菱形性质:a、菱形四边_____;b、对角_____,邻角_______;c、对角线___________,且平
分______;d、对称性:菱形是______图形。
菱形判定:a、邻边_____的平行四边形是菱形;b、对角线_________的平行四边形是菱形;c、
对角线_________的四边形是菱形;d、四边______的四边形是菱形。
4、正方形性质:a、四边_______且邻边______;b、四个角都是_______
平行四边形复习讲义
中学1对1课外辅导专家
学科培训师辅导讲义
学员编号 学员姓名 课 题 备课时间 教学目标 重点、难点 年 级 辅导科目 七年级 数学 课时数 学科培训师 2 周老师 平行四边形复习讲义 2016年04月 14日 授课时间 2016年04月15日 掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。 1.平行四边形、矩形、菱形、正方形性质及判定的应用 2.相关知识的综合应用 特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之 一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及考点及考试要求 灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、 正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 教学内容 (1) 演变关系: (2) 从属关系: 1
成功不是凭梦想和希望,而是凭努力和实践
平行四边形教学方案
平行四边形(一)
【教学内容】
教科书第70页例1、例2、练习十九1,3,4。
【教学目标】
1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。
2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。
3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。
4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。
5.了解平行四边形在生活中的应用。
【教学重、难点】
教学重点:认识平行四边形及其特征。
教学难点:自己探索、发现、描述、应用平行四边形的特征。
【教学准备】
教具:课件,长方形、三角形活动框,磁性小棒。
学具:三角板,量角器,直尺,平行四边形
纸片(4人小组相同),小棒4根(两两等长)。
【教学过程】
一、 导入新课
1. 目标导学。
(1) 什么是平行四边形?
(2) 平行四边形
2010届中考数学特殊平行四边形
3eud教育网 http://www.3edu.net 百万教学资源,完全免费,无须注册,天天更新!
中考数学专题复习——特殊平行四边形
一、选择题
1.(08山东省日照市)只用下列图形不能镶嵌的是 ( )
A.三角形 B.四边形 C.正五边形 D.正六边形
2、(2008浙江义乌)下列命题中,真命题是 ( )
A.两条对角线垂直的四边形是菱形 B.对角线垂直且相等的四边形是正方形 C.两条对角线相等的四边形是矩形 D.两条对角线相等的平行四边形是矩形
3、(2008山东威海)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为 ( )
A.1 B.2 C.2 D.3
D C D F C
O A
B
A
E
B
4.(2008年山东省临沂市)如图,菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD
的中点,连接AE、EF、AF,则△AEF的周长为( ) A. 23 B. 33 C. 43 D. 3
ABECFD
5. (2008年山东省潍坊市)如图,梯形