油层界面吸附现象定义
“油层界面吸附现象定义”相关的资料有哪些?“油层界面吸附现象定义”相关的范文有哪些?怎么写?下面是小编为您精心整理的“油层界面吸附现象定义”相关范文大全或资料大全,欢迎大家分享。
界面现象-学生答案
物理化学试卷 答案
一、选择题 ( 共68题 121分 ) 1. 2 分 (6601)
6601
[答] (A) 表面张力???随温度之增高而下降,由 ?p = 2??/R 知,右端冷却时 其附加压力增加而左端不变,故向左移动。
2. 2 分 (6602) 6602
[答] (B) 温度上升,表面张力下降。
3. 2 分 (6603)
6603
[答] (C)
4. 2 分 (6604)
6604
[答] (A)
界面现象题目--答案参考
界面现象习题集
1、为什么自由液滴必成球形?
答:纯液体表面上的分子比内部分子具有更高的能量,而能量降级为一自发过程,所以它必然导致表面面积为最小状态。
2、为什么有云未必有雨?如何使云变成雨
答:空气的上升运动,造成气温下降,形成过饱和水气;加上吸湿性较强的凝结核的作用,水气凝结成云,来自云中的云滴,冰晶体积太小,不能克服空气的阻力和上升气流的顶托,从而悬浮在空中。当云继续上升冷却,或者云外不断有水气输入云中,使云滴不断地增大,以致於上升气流再也顶不住时候,才能从云中降落下来,形成雨。
3、分子间力与什么有关,其与表面张力的关系何在?
答:分子间力与温度、电荷分布、偶极矩、分子相对质量、外加电场有关 表面张力实质为每增加单位表面积所增加的自由焓 1)表面张力的物理意义需用分子间作用力解释:
在液体表面,表面分子的两侧受力不等。气相分子对它的引力远远小于液相。必然受到向下的拉力。所以,要将液体内部的分子拉至表面,必须克服分子间力对其做功。 该功主要用来增加其表面能。即: ? d w ' ? ? dA Γ为增加单位表面积所做的功。 对纯液体而言,热力学诸函数关系为: dG?Vdp?sdT??dA d
第九章界面现象
第九章 界面现象
第九章 界面现象
一、本章小结
1. 表面张力、表面功及表面吉布斯函数
表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m?1。 表面功:δWr'/dAs,使系统增加单位表面所需的可逆功,单位为J·m?2。
表面吉布斯函数:(?G/?As)T,p,nB(?),恒温恒压下系统增加单位表面时所增加的吉布斯函数,单位为J·m?2。
表面吉布斯函数的广义定义:
?U?H?A?G)S,V,nB(?)?()S,p,nB(?)?()T,V,nB(?)?()T,p,nB(?) ?As?As?As?As??(???Wr'dAs?dGT,pdAs
表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m?1。
在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数:
Gs???iAsii
2. 弯曲液面的附加压力、拉普拉斯方程
附加压力:Δp=p内?p外 拉普拉斯方程:?p?2? r规定弯曲液面凹面一侧压力位p内,凸面一侧压力位p外;γ为表面张力;r为弯曲液面的曲率半径,△p一律取正值;附加压力方向总
第十章 界面现象
第十章 界面现象
10.3 298.15K时,乙醚-水、乙醚-汞及水-汞的界面张力分别为0.0107N·m-1、0.379 N·m-1及0.375 N·m-1,若在乙醚与汞的界面上滴一滴水,试求其润湿角。
乙醚 σ乙醚-水 σ汞-乙醚 汞 θ σ汞-水 10.3题
解:此润湿过程如图所示,因此可按杨氏方程计算接触角。
?汞-乙醚??汞 -水??乙醚-水cos? cos???汞-乙醚??汞 -水0.379?0.375??0.3738
?乙醚-水0.0107??68.05?
10.5 已知CaCO3在773.15K时的密度为3900kg·m-3,表面张力为1210×10-3N·m-1,分解压力为101.325Pa。若将CaCO3研磨成半径为30nm(1nm=10-9m)的粉末,求其在773.15K时的分解压力。
解:一定温度下CaCO3的分解压力是指CaCO3分解产物CO2的平衡压力。此分解压力与反应物CaCO3的分散度即颗粒半径之间关系可用开尔文公式表示,即
pr2?M2?1.21?100.09?10?3ln??pRT?r8.314?773.
3第十章界面现象
物化第十章 界面现象习题
一、名词解释 1. 表面活性剂 2. 接触角 3. 表面张力 4. 临界胶束浓度 5. 吸附
6. 溶液的表面吸附 二、简答题
1 兰格缪尔吸附理论的基本假设是什么?在推导BET公式时,所作的基本假设是什么?二者的使用范围如何?
2. 进行蒸馏实验时,通常在蒸馏瓶中加入少量碎瓷片或沸石类的物质以防止暴沸,试分析其原因。 3. 为什么表面活性剂能大大地降低水的表面张力?
4. 表面活性物质的增溶作用是什么?增溶作用与一般溶解有什么区别? 5. 气-固、液-固、液-液界面分别以什么方式降低表面自由能? 6. 简述人工降雨的科学道理。
7. 加热液体时为什么会出现过热现象?怎样避免暴沸?请解释原因。 8 为什么空气中会出现水蒸气过饱和的现象?人工降雨的道理何在? 9. 在亲水固体表面,经过表面活性剂(如防水剂)处理后,为什么可以改变其表面性质,使其具有憎水性? 三、判断题
1. 比表面吉布斯自由能与表面张力符号相同,数值相等,所以两者的物理意义相同。 2. 在液体中形成的小气泡,气泡的半径越小,泡内饱和蒸汽压越小。 3. 若增加浓度能使表面张力增大时,则溶质在表面层发生正吸附。 4.只有表面活性剂的浓度低于临界胶束浓度时,
相平衡 电化学 界面现象习题-修改版
第六章相平衡
一、选择题
1. N2的临界温度是124 K,如果想要液化N2就必须: (A)在恒温下增加压力 (B)在恒温下降低压力 (C)在恒压下升高温度 (D)在恒压下降低温度
2. CuSO4与水可生成CuSO4?H2O,CuSO4?3H2O,CuSO4?5H2O三种水合物,则在一定温度下与水蒸气平衡的含水盐最多为:B
(A)3种 (B)2种 (C)1种 (D)不可能有共存的含水盐 3. 将固体 NH4HCO3(s) 放入真空容器中,恒温到 400 K,NH4HCO3 按下式分解并达到平衡:NH4HCO3(s) = NH3(g) + H2O(g) + CO2(g) 体系的组分数 C 和自由度数 f 为:C (A)C= 2, f= 1 (B)C= 2, f= 2 (C)C= 1, f= 0 (D)C= 3, f= 2 4. 在一个密封的容器中装满了温度为373.15 K的水,一点空隙也不留,这时水的蒸气压:( D )
(A)等于零 (B
油层物理
2016年硕士研究生入学考试大纲
考试科目名称:渗流物理 考试时间:180分钟,满分:150分 一、考试要求:
要求掌握油层物理及渗流力学的基本概念、特点、基本理论和方法,并能够熟练运用所学的知识解决生产实际问题。试卷结构一般如下:
a. 基本概念题;b. 填空判断;c. 分析简答题(包括绘简图);d. 推导计算题。
二、考试内容:
(一)油层物理要求的主要内容
第一章 储层流体的物理性质
第一节 储层烃类的组成及分类
石油的化学组成及分类、天然气的化学组成及分类。
第二节 储层烃类的相态特征
有关相态的基本概念;单、双、多组分体系的相态特征、相图的应用;典型油气藏相态特征。
第三节 油气系统的溶解与分离
亨利定律、天然气在原油中的溶解特点及其影响因素;相态方程的推导及其应用;平衡常数定义及确定方法,理想溶液平衡常数及应用;油气分离方式、特点及多级分离计算。
第四节 天然气的高压物性
天然气的基本物性参数(组成、视分子量,相对密度,压缩系数,体积系数,压缩因子,天然气粘度)定义、特点及其应用;天然气状态方程(理想气体状态方程、压缩因子状态方程)及其应用;对应状态定律、天然气压缩因子图版的应用。
第五节 地层油的高压物性
物理吸附仪吸附理论
吸附理论
1、Langmuir理论
Langmuir用动力学理论来处理Ⅰ型吸附等温线,作了如下假设: (1)吸附剂表面是均匀的;
(2)每个吸附位只能吸附一个分子且只限于单层,即吸附是定域化的; (3)吸附质分子间的相互作用可以忽略; (4)吸附-脱附的过程处在动力学平衡之中。 从而得出Langmuir方程如下:
p1p??VKVmVm
V──吸附体积;Vm──单层吸附容量;p──吸附质压力;K──常数。 虽然Langmuir方程描述了化学吸附和Ⅰ型吸附等温线,但总的来说不适用于处理物理吸附和Ⅱ到Ⅴ型吸附等温线。如前所述,Ⅰ型吸附等温线反映的吸附类型可能是化学吸附也可以是微孔中的物理吸附。对于化学吸附,如负载金属催化剂的金属表面积测量是合适的,但对于一般物理吸附来说测量值往往偏大。此外,对于微孔物质如活性炭和分子筛上的吸附,是否是单层吸附还有待商榷等等。 2、BET理论
在物理吸附过程中,在非常低的相对压力下,首先被覆盖的是高能量位。具有较高能量的吸附位包括微孔中的吸附位(因为其孔壁提供重叠的位能)和位于平面台阶的水平垂直缘上的吸附位(因有两个平面的原子对吸附质分子发生作用)。此外,在由多种原子组成的固体表面,吸附位能也会发生改变,这取决于暴
油层物理实验指导
《油层物理学》 实验指导书
单钰铭 编
成都理工大学
石油系石油工程实验室
2001.12
前 言
为了适应石油工程、资源勘查工程专业学科建设以及现代实验教学要求和发展的需要,编写了这本油层物理实验指导书,供本科生教学实验使用。
本实验指导书是在王允诚教授主编的《油层物理学》教材之附录—油层物理基本实验的基础上,结合目前实验室建设现状,并参考了目前国内其它油层物理实验教材编写而成。
油层物理实验是油层物理学的重要组成部分,油层物理实验的学习和实践,目的是培养学生独立从事科学实验的能力和具有实事求是的科学态度;熟练掌握油层物理实验的基本技能;培养观察、分析现象并解决实际问题的能力,学会独立思考,灵活运用理论知识指导科学实践,提高科学实验素质。
本实验指导书密切配合理论教学的基本要求,着重实验基础和实验操作技术等内容的介绍。
由于编者水平所限,书中存在的缺点和错误在所难免,热情希望使用者给予批评指正。
编者 2001年12月
目 录
一、实
油层物理习题
油层物理:
一、名词解释题
1.粒度组成:岩石各种大小不同颗粒的含量。
2.不均匀系数(n):n=d60/d10,式中:d60——在颗粒累积分布曲线上颗粒累积重量百分数为60%的颗粒直径;d10———在颗粒累积分布曲线上颗粒累积重量百分数为10%的颗粒直径。 3.粘土:直径小于0.01的颗粒占50%以上的细粒碎屑。
4.胶结类型:胶结物在岩石中的分布状况及与碎屑颗粒的接触关系。 5.岩石的比面(S):单位体积岩石内颗粒的总表面积或孔隙总的内表面积。 6.岩石的孔隙度(υ):岩石中孔隙体积与岩石总体积的比值。 7.岩石的绝对孔隙度(υa):岩石的总孔隙体积与岩石外表体积乊比。 8.岩石的有效孔隙度(υe):岩石中有效孔隙体积与岩石外表体积乊比。
9.岩石的流动孔隙度(υf):在含油岩石中,能在其内流动的孔隙体积与岩石外表体积乊比。 10.岩石的压缩系数(Cf):Cf=ΔVp/Vf*1/ΔP,Cf是指油层压力每降低一个大气压时,单位体积岩石内孔隙体积的变化值。
11.油层综合弹性系数(C):C=Cf+ΦCl;C=Cf+Φ(CoSo+CwSw) 当油层压力降低或升高单位压力时,单位体积油层内,由于岩石颗粒的变形,孔隙体积的缩小或增大,液体