全等三角形判定教学案例研究
“全等三角形判定教学案例研究”相关的资料有哪些?“全等三角形判定教学案例研究”相关的范文有哪些?怎么写?下面是小编为您精心整理的“全等三角形判定教学案例研究”相关范文大全或资料大全,欢迎大家分享。
全等三角形教学案例
教学案例
----全等三角形
泉溪镇中心学校 夏意明
设计目的:
数学课堂是教学的主阵地,要实现新课程的价值追求和目标框架,教师应转变观念、转变角色,努力为学生创设一个广阔的活动空间、合作空间,使学课堂教学由“传授知识”的权威模式向以“激励学习”为特色的学生实践为主的教学转变。《新课程标准》指出:学生的数学学习活动应是一个生动活泼、主动的和富有个性的过程。充分体现了“以人为本、关注人的发展、促进人的发展、以学生为中心”的素质教育思想,教师的教是为了学生的学。新课程改革中,要求教师的角色由传授者转化为促进者,由管理者转化为引导者,由居高临下转向“平等中的首席”。教室不再是学生静静聆听老师宣讲那些格言般的定理、法则的讲堂,而是成为他们活动、实践、探索的学习场所。教师应作为一个组织者,在设计好教学方式后,把课堂还给学生,给学生多留点空间,激发学生的生命活力。 教材分析:
《全等三角形的条件》是新人教版数学八年级(上)中第十三章《全等三角形》的第二节内容,教材中共有8 个探究,常规的教材处理是分 4 课时完成:第 1 课时是“ SSS ”,第 2 课时是“ SAS ”,第 3 课时是“ ASA ”、“ AAS ”,第 4 课时是“ HL ”,教材
全等三角形教学案例
教学案例
----全等三角形
泉溪镇中心学校 夏意明
设计目的:
数学课堂是教学的主阵地,要实现新课程的价值追求和目标框架,教师应转变观念、转变角色,努力为学生创设一个广阔的活动空间、合作空间,使学课堂教学由“传授知识”的权威模式向以“激励学习”为特色的学生实践为主的教学转变。《新课程标准》指出:学生的数学学习活动应是一个生动活泼、主动的和富有个性的过程。充分体现了“以人为本、关注人的发展、促进人的发展、以学生为中心”的素质教育思想,教师的教是为了学生的学。新课程改革中,要求教师的角色由传授者转化为促进者,由管理者转化为引导者,由居高临下转向“平等中的首席”。教室不再是学生静静聆听老师宣讲那些格言般的定理、法则的讲堂,而是成为他们活动、实践、探索的学习场所。教师应作为一个组织者,在设计好教学方式后,把课堂还给学生,给学生多留点空间,激发学生的生命活力。 教材分析:
《全等三角形的条件》是新人教版数学八年级(上)中第十三章《全等三角形》的第二节内容,教材中共有8 个探究,常规的教材处理是分 4 课时完成:第 1 课时是“ SSS ”,第 2 课时是“ SAS ”,第 3 课时是“ ASA ”、“ AAS ”,第 4 课时是“ HL ”,教材
三角形全等的判定
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
1、掌握边角边公理的内容。 2、会用边角边公理证明两个三角形全等。
3、培养学生观察、识图的能力。
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
在下列图中找出全等的三角形,并把它们读出来。
三角形全等的判定一
例: 已知如图,AC=AD,∠CAB=∠DAB 求证△ACB≌△ADB
三角形全等的判定一
变化一已知:AC=BD,∠CAB=∠DBA 求证:△ABC≌△BAD
三角形全等的判定一
变化二已知:(如图)BD、CE相交于A,AB=AC AD=AE 求证:△ABE≌△ACD
三角形全等的判定一
练习已知:(如图)AB=AC、AE=AD 求证:△ABE≌△ACD
三角形全等的判定一
一、判断: 1、△ABC和△EFG中,AB=EF、AC=EG,∠A=∠E, 则△ABC≌△EFG ( ) 2、 △ABC和△EFG中,AB=EF、AC=EG,∠B=∠E, 则△ABC≌△EFG ( )
三角形全等的判定一
二、如图:已知AB∥CD,且AB=CD 求证:△ABC≌△CDA
A
D
B
C
三角形全等的判定一
有两边和一角相等的两个三角 形,是否全等?
三角形全等的判定教学反思
篇一:《全等三角形的判定1》教案及教学反思
《全等三角形的判定1》教案及教学反思
教学目标 1知识目标:
掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等 . 2能力目标:
使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力. 3思想目标:
通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。
教学重点、难点:
重点:利用边边边证明两个三角形全等 难点:探究三角形全等的条件 教学过程 (一)复习提问
1、 什么叫全等三角形? 2、 全等三角形有什么性质? 3 、若△ABC≌△DEF,点A与点D,点B与点E是对应点,试写出其中相等的线段和角.
(二)新课讲解: 问题1:如图:在△ABC和△DEF中,AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F,则△ABC和△DEF全等吗?
问题2: △ABC和△DEF全等是不是一定要满足AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗?
一个条件可分为:一组边相等和一组角相等
两个条件可分为:两个边
全等三角形判定复习教学设计
.
. 《三角形全等的判定习题课》教学设计
市科左后旗甘旗卡第三初级中学林丽哲
一、关于教学容和要求的思考
本节的主要容是:通过判定三角形全等的三种题型复习全等三角形的判定方法,利用题中的已知条件、挖掘“隐含条件”、转化“间接条件”、合理添加“辅助线”来判定三角形全等,充分掌握分析问题的方法,使所学的知识能灵活应用到解题当中。要求逐步培养学生观察、比较、分析、综合、抽象和概括的能力,提高学生的空间想象能力和思维能力,这是《数学课程标准》中对中学数学的要求。本节的课题是《三角形全等的判定习题课》是八年级数学的重点容之一,在生活中有广泛的应用,同时三种题型中的条件的挖掘、转化与利用也是九年级的重点容,在八年级学习中适当的安排相应的容,对于九年级的学习起着渗透的积极作用,学会运用条件的直接与间接的使用、转化解决问题策略的思想方法,发展学生的创新意识,增强图形变换的兴趣,也巩固了全等的知识。
二、学生情况的分析
1、学生已有的知识基础:本节课是在学生已经学习完了全等三角形的判定方法,的基础上进一步来研究的。
2、八年级学生心理生理特点:中学生心理学研究指出:初中阶段是智力发展的关键时期,学生逻辑思维从经验型逐步向理论型发展,观察能力记忆力和想象能力也随着迅速发展。
《全等三角形的判定》教学反思
教材中将这块知识分为4个课时,每个课时解决一个判定,依次分别为SSS、SAS、ASA、AAS。编者的安排无非是希望讲练结合,使学生能掌握扎实。但这样将判定割裂开来之后,教师上课时会感觉每节课都是探究一种判定,然后刷题,按照这样的模式上4节课,不说学生,教师自己都会觉得枯燥无聊,并且没有一个系统性。因此本节课笔者将其进行了整合,在第一节课就探究了判定全等的4种方法。其实在两年前“整体教学”的培训中,就有过想将这节课上成整合课的想法,但一直没有实施。
问题1:如何判断两个三角形是否全等?
生1:能够完全重合的两个三角形
生2:形状相同、大小相等的两个三角形
生3:形状相同、面积相等的两个三角形
这两种回答其实是从两个角度来诠释了全等,完全重合是从几何直观上,而形状相同、大小(面积)相等是从量的角度出发,实际上利用几何直观这样的方法仅存在与理论上,例如互不相交的两条直线为平行线,故势必要从量上去判断。
追问:两个三角形满足怎样的条件算形状相同,大小相等?
预设:三个角对应相等,三条边对应相等。
但学生却认为大小相等为面积相等,故会认为两个三角形要底相等,高相等。这样的生成,一时
怎样判定三角形全等教案
本教案实用性很强,是一个不错的教案。
青岛版八年级数学(下)教案
怎 样 判 定 三 角 形 全 等
(角边角公理)
山东临朐辛寨初级中学 刘爱玲
教材分析:在探索三角形全等的判定方法时,教科书利用问题串的形式设计
了一系列操作活动。教科书安排的发现过程是由特殊到一般,由问题(1)、(2)
的个别情形转向问题(3)一般情形进行探究,然后由问题(4)提出猜想、归纳
结论,导出判定方法。
学情分析:通过前面几何图形的学习,学生已经具备了观察图形的能力,初
步学会图形语言与符号语言之间的相互转化,在观察、实验、探究、猜测和相互
交流的基础上运用归纳推理和类比推理探索结论,发展合情推理能力。
一、学习目标
1、通过画图、操作、实验、观察等数学活动,探索三角形全等的判定方法。
2、了解判定方法”ASA、AAS”,能初步运用它们判定两个三角形全等。
3、在动手操作的过程中,培养主动探索精神与合作交流意识。
二、学习重、难点
重点:运用判定方法”ASA、AAS”判定两个三角形全等。
难点:全等三角形判定方法的探究。
三、知识准备:
1、只知道一条边相等的两个三角形一定全等吗?只知道一个角相等的两个
三角形一定全等吗?
2、知道一条边及一个角分别相等的两个三角形全等吗?知道两个角分别相
等的两个三角
怎样判定三角形全等教案
本教案实用性很强,是一个不错的教案。
青岛版八年级数学(下)教案
怎 样 判 定 三 角 形 全 等
(角边角公理)
山东临朐辛寨初级中学 刘爱玲
教材分析:在探索三角形全等的判定方法时,教科书利用问题串的形式设计
了一系列操作活动。教科书安排的发现过程是由特殊到一般,由问题(1)、(2)
的个别情形转向问题(3)一般情形进行探究,然后由问题(4)提出猜想、归纳
结论,导出判定方法。
学情分析:通过前面几何图形的学习,学生已经具备了观察图形的能力,初
步学会图形语言与符号语言之间的相互转化,在观察、实验、探究、猜测和相互
交流的基础上运用归纳推理和类比推理探索结论,发展合情推理能力。
一、学习目标
1、通过画图、操作、实验、观察等数学活动,探索三角形全等的判定方法。
2、了解判定方法”ASA、AAS”,能初步运用它们判定两个三角形全等。
3、在动手操作的过程中,培养主动探索精神与合作交流意识。
二、学习重、难点
重点:运用判定方法”ASA、AAS”判定两个三角形全等。
难点:全等三角形判定方法的探究。
三、知识准备:
1、只知道一条边相等的两个三角形一定全等吗?只知道一个角相等的两个
三角形一定全等吗?
2、知道一条边及一个角分别相等的两个三角形全等吗?知道两个角分别相
等的两个三角
11.2.3三角形全等判定(ASA)教学设计
三角形全等判定(角边角)教案
一、教学目标
1.理解“角边角”、“角角边”判定三角形全等的方法. 2.经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定方法解决实际问题.
3.培养良好的几何推理意识,发展数学思维,感悟全等三角形的应用价值.
二、教学重点、难点、
1.重点:应用“角边角”、“角角边”判定三角形全等. 2.难点:学会综合法解决几何推理问题. 三、教学过程 (一)、创设情境
用一块三角形纸片撕去了一个角,要去剪一块新的,如果你手头没
有测量的仪器,你能保证新剪的纸片形状、大小和原来的一样吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉,于是教师引导学生,抓住问题的本质:三角形的三个元素---两个角一条边.做一做
学生画一个三角形,使得三角形的两个角分别为为40°和60°,它们的夹边为15cm,把你画的三角形与你同桌画的三角形进行比较三角形是否全等吗?若全等,你能得出什么结论?<小组进行讨论>
归纳:两角与它们的夹边对应相等的两个三角形全等(简写成“角
1
边角”或“ASA”).
问题1:课本图11.2─8中,∠A′=∠A,∠B′=∠B,那么∠C=∠A′C′B?′吗?
1.5全等三角形判定4
锦城三中____二 年级_ 数学__学科导学案(学生版)
主编:__ __ 审核:____使用时间:__第三周_ 第__3_课时
课题 1.5三角形全等的判定4 学习目标:1、掌握并运用三角形全等的判定定理:两角及其中的一个角的对边对应相等的两个三角形全等(AAS). 2、掌握角平分线的性质定理:角平分线上的点到角两边的距离相等. 教学过程:阅读课本P34-P35 1、思考:在一个三角形中两角确定,第三个角一定确定.我们可不可以,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 2、探究问题:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? 结论:两个 和其中 对应相等的 全等(可以简写成“角角边”或“ ”). 3.右图中,AD=BC,DE∥BC,于是∠1=∠B。 在△ABC和△ADE中,虽有∠A=∠A,AD=BC, ∠1=∠B,△ABC与△ADE全等吗?。你有什么结论? 例6.如图,AB⊥BC,AD⊥DC,∠BAC=∠CAD. 求证:A