电镀废水氨氮处理
“电镀废水氨氮处理”相关的资料有哪些?“电镀废水氨氮处理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“电镀废水氨氮处理”相关范文大全或资料大全,欢迎大家分享。
氨氮废水处理
氨氮废水处理
中华硕博网 WWW.CHINA-B.C0M 2009年03月11日 来源:互联网
中华硕博网核心提示: 摘要:综述了目前国内外高浓度氨氮废水处理方法中物化法、生化联合法和新型生物脱氮法的原理、应用以及研究进展情况,并指出了各种方
摘要:综述了目前国内外高浓度氨氮废水处理方法中物化法、生化联合法和新型生物脱氮法的原理、应用以及研究进展情况,并指出了各种方法存在的问题。并指出新型高效的生物脱氮工艺以及简单实用的生化联合工艺是今后研究工作的重点。
关键词:高浓度氨氮废水物化法生化联合法新型生物脱氮
过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮,以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1物化法 1吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液
高浓度氨氮废水处理技术
高浓度氨氮废水处理技术(专利号:ZL02112729.8)
一、高浓度氨氮废水处理技术原理 高浓度氨氮废水处理技术
(专利号:ZL02112729.8国际专利主分类号:C02F9/08) 工艺基理
处理高浓度氨氮废水的原理,必须先从氨氮的性质和特性讲起。所谓氨氮(NH3-N)即氨态氮,就是以氨的形态存在于水中的氮。氨氮(NH3-N)都是以铵盐(NH4+)和游离氨(NH3)两种形态存在,其比例高低取决于废水的PH值。当PH值高(碱性)时,游离氨(NH3)的比例就高;PH值低(酸性)时,铵盐(NH4+)的比例就高,铵盐和游离氨的比例随着废水PH值的变化而变化。人们正是利用氨氮的这一特性,不断寻求去除氨氮的新途径。
由我司研发出的一种高效复合脱氮剂,含有大量的O、H、OH、CH、CH2等原子和离子活性基团,在催化作用下可以轻而易举地将剩余氨水中的铵盐其他有机胺最大限度的转化成游离氨;同时可以最大限度地减少氨和其他混合气体中氨的分压,加快游离氨从剩余氨水中释出的解吸过程和解吸的传递速率,使转化的游离氨能够快速充分地与废水分离,实现氨水或酼胺回收。高效复合脱氮剂还具有强氧化还原作用,它可以在高效复合脱氮的物理、化学作用下,将
高浓度氨氮废水处理技术
高浓度氨氮废水处理技术(专利号:ZL02112729.8)
一、高浓度氨氮废水处理技术原理 高浓度氨氮废水处理技术
(专利号:ZL02112729.8国际专利主分类号:C02F9/08) 工艺基理
处理高浓度氨氮废水的原理,必须先从氨氮的性质和特性讲起。所谓氨氮(NH3-N)即氨态氮,就是以氨的形态存在于水中的氮。氨氮(NH3-N)都是以铵盐(NH4+)和游离氨(NH3)两种形态存在,其比例高低取决于废水的PH值。当PH值高(碱性)时,游离氨(NH3)的比例就高;PH值低(酸性)时,铵盐(NH4+)的比例就高,铵盐和游离氨的比例随着废水PH值的变化而变化。人们正是利用氨氮的这一特性,不断寻求去除氨氮的新途径。
由我司研发出的一种高效复合脱氮剂,含有大量的O、H、OH、CH、CH2等原子和离子活性基团,在催化作用下可以轻而易举地将剩余氨水中的铵盐其他有机胺最大限度的转化成游离氨;同时可以最大限度地减少氨和其他混合气体中氨的分压,加快游离氨从剩余氨水中释出的解吸过程和解吸的传递速率,使转化的游离氨能够快速充分地与废水分离,实现氨水或酼胺回收。高效复合脱氮剂还具有强氧化还原作用,它可以在高效复合脱氮的物理、化学作用下,将
含氨氮及含磷废水的处理-论文
含氨氮及含磷废水的处理
Study on removal of ammonia-nitrogen and
phosphorus from wastewater
毕业设计(论文)任务书
毕业设计(论文)题目: 含氨氮及含磷废水的处理 设计(论文)的基本内容: 论文针对目前工业废水中氨氮及总磷含量高,对自然水体生态污染严重,缺乏高效、可行的脱氮、脱磷技术工艺的问题点,通过开展实验研究的方法,以工业废水为研究对象,设计和开发了一种新型、高效的脱氮、脱磷污水处理技术——MAP一二级处理联合法,并通过如下实验研究论证了其有效性,考察了影响因素,优化了最佳操作条件。 一、通过开展实验研究的方法,论证利用MAP法进行废水的脱氮、脱磷处理的可行性; 二、通过开展MAP法水处理正交实验,确立各操作条件对脱氮、脱磷效果的影响,确立最佳反应条件的确立; 三、论证设立后续二级处理工艺的必要性,并通过开展对比实验的方法,评价多种二级处理的性能,进而通过解析优化,确立最佳二级处理工艺。 毕业设计(论文)专题部分: 题目: 设计或论文专题的基本内容: 学生接受毕业设计(论文)题
氨氮废水处理研究 毕业论文
引 言
随着我国经济的高速发展,伴随而来的是人口的剧增和工农业规模迅猛扩大,水污染日趋严重,其中由于氨氮废水大量排入,特别是高浓度氨氮废水排放量不断增大,导致水体富营养化,造成海洋出现赤潮现象,水中的溶解氧过度消耗,复氧速率明显小于耗氧速率,最终导致鱼类大量的死亡,甚至出现湖泊的干涸灭亡。另外由于一些工业的排放的氨氮废水成分复杂,毒性强,又具有很强的致癌性。加深水体的污染。与此同时也给给水工程带来很大的困难,出现水质恶化,形成生物垢堵塞管道及设备,影响热效益等问题。
第一章 处理氨氮废水的研究综述
1.1 氨氮废水的来源及危害
氨氮废水的来源很广,在工业中,如钢铁厂,化工玻璃制造厂,炼钨厂,肉类加工及饲料加工工业等行业。这些行业在其生产过程中排放废水中含有大量氨氮,而在农业中,大量使用化肥作业,但由于其利用效率的不高而造成大量的氨流失。在一些养殖场中动物的排泄物以及垃圾渗滤液都含有氨氮。这些行业基本上排放的氨氮浓度很高,甚至有的达到6000mg/L或是更高。而一些如皮革,食品和养殖场的排放废水中氨氮的浓度本身不高,但是由于有机氧的脱氮基反应,氨氮浓度迅速上升,污染进一步加重。
氨氮是水体富营养化和环境污染的一种重要污
电化学氧化法处理高浓度氨氮废水的研究
摘要:采用间歇试验的方法对电化学氧化处理模拟高浓度氨氮废水的影响因素进行研究。分别考察了电流密度、极板间距、氯离子浓度、反应初始pH值对氨氮和总氮去除率的影响。试验结果表明,电化学氧化法去除氨氮和总氮的最佳电流密度为80mA/cm2.板板间距为30mm,氟离子质量浓度为7000mg/L,pH值为9~11。在上述条件下,反应7 h,总氮的质量浓度从3000 nqIs/L降到379.4ms/L.去除率达到87.35%。。
INDUSTRIAL
WATER&WASTEWATER
工业用水与废水
V01.39No.3
Jun..2008
电化学氧化法处理高浓度氨氮废水的研究
王程远,胡翔,李毅,王国才
(北京化m大学环境科学与工程系,北京
100029)
摘要:采用间歇试验的方法对电化学氧化处理模拟高浓度氨氮废水的影响因素进行研究。分别考察了电流密度、极板间距、氯离子浓度、反应初始pH值对氨氮和总氮去除率的影响。试验结果表明,电化学氧化法去除氨氮和总氮的最佳电流密度为80mA/cm2.板板间距为30mm,氟离子质量浓度为7000mg/L,pH值为9~11。在
上述条件下,反应7h,总氮的质量浓度从3000nqIs/L降到379.4ms/L.去除率达到87.35%。电化学氧
电镀废水回用处理方案
电镀废水回用处理方案
电镀废水回用处理方案
1、设计方案
本项目为加载嵌合电镀废水处理装置,设计处理量:1000m3/a。 1.1、方案制定的原则
(1) 严格执行国家及地方的相关法规、政策、规范和标准。 (2) 综合考虑环境效益、经济效益和社会效益。
(3) 合理布局,尽量减少占地面积,降低投资和运行费用。 (4) 选择国内外技术成熟、运行可靠的技术及设备,满足处理出水要求。运行管理方便,运转灵活,对进水水量、水质的变化有相应的抗冲击能力及应变能力。
(5) 充分体现节约用水、资源回收利用的原则。
(6) 充分考虑当地实际情况,开停车期间,考虑安全可行的措施。 (7) 采用高水平的工艺过程和自动化控制标准。 (8) 选择适用的污泥脱水处理工艺。 1.2、 设计标准
GB21900-2008电镀废水排放标准 序号 1 2 污染物项目 总铬(mg/L) 六价铬(mg/L) 排放限值 1.0 0.2 污染物排放监控位置 车间或生产设施废水排放口 车间或生产设施废水排放口 电镀废水回用处理方案
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 总镍(mg/L) 总镉(mg/L) 总银(mg/L) 总铅(m
磷酸镁铵处理高氨氮废水的技术经济核算
磷酸镁铵沉淀法去除氨氮的可行性论证核算结果
采用和不采用磷酸镁铵沉淀法去除氨氮后的4种废水水质 第1种污水水质 (231m3/h) 沉淀后第1种污水水质(231m3/h) 第2种污水水质 (231+160) m3/h 231.3 mg/l 126.3 mg/l 46.9 mg/l 153.8 mg/l 沉淀后第2种污水水质(231+160) m3/h 231.3 mg/l 126.3 mg/l 46.9 mg/l* ≤60 mg/l CODCr BOD5 SS NH4—N pH Ca2+ Mg2+ PO43- 硫化物 重碳酸根 碳酸根 360mg/l 267mg/l 80mg/l 285.7mg/l 6~9 250 mg/l 90 mg/l 0 mg/l 0.18 mg/l 300.0 mg/l 3.0 mg/l 360mg/l 267mg/l 80mg/l* ≤60 mg/l 6~9 250 mg/l ≤0.02 mg/l ≤10 mg/l 0.18 mg/l 300.0 mg/l 3.0 mg/l
6~9 213.3 mg/l 89.0 mg/l 0.7 mg/l 6~9 213.3 mg/l ≤0.03 mg/l ≤10 mg
电镀废水处理综述
电镀废水的成分非常复杂,除含氰(CN)-废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。多数废水为含铬(Cr)、镍(Ni)、含镉(Cd)、铜(Cu)、锌(Zn)废水,而含金(Au)和银(Ag)贵重金属废水直接回收。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺>清洁生产工艺、总量控制阶段,但是进步的资源回收利用和闭路循环将是发展的主要方向。所以现所提出的微滤+反渗透处理回收电镀废水技术,将会被更多企业采用。
1.概述
电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。广泛应用于机器制造、轻工、电子等行业。为提高镀件的质量,电镀生产中使用的电镀添加剂种类和数量越来越多,成分也越来越复杂,这些添加剂含有与重金属离子络合作用较强的成分,如:酒石酸、EDTA、焦磷酸盐、柠檬酸和氨等,在采用传统化学沉淀法处理电镀废水过程中,重金属离子就不能完全形成氢氧化物沉淀,其中的重金属离子含量极容易超过国家废水排放标准。以本公司设计施工的上海世界知名拉链电镀厂,电镀废水采用双膜法深度处理里回用实现零排放,取得经济与环境效益的双重收益为案例,论证双膜法工艺的优异。
2.工艺流程
3.前段传统工艺说明
3.1
磷酸镁铵处理高氨氮废水的技术经济核算
磷酸镁铵沉淀法去除氨氮的可行性论证核算结果
采用和不采用磷酸镁铵沉淀法去除氨氮后的4种废水水质 第1种污水水质 (231m3/h) 沉淀后第1种污水水质(231m3/h) 第2种污水水质 (231+160) m3/h 231.3 mg/l 126.3 mg/l 46.9 mg/l 153.8 mg/l 沉淀后第2种污水水质(231+160) m3/h 231.3 mg/l 126.3 mg/l 46.9 mg/l* ≤60 mg/l CODCr BOD5 SS NH4—N pH Ca2+ Mg2+ PO43- 硫化物 重碳酸根 碳酸根 360mg/l 267mg/l 80mg/l 285.7mg/l 6~9 250 mg/l 90 mg/l 0 mg/l 0.18 mg/l 300.0 mg/l 3.0 mg/l 360mg/l 267mg/l 80mg/l* ≤60 mg/l 6~9 250 mg/l ≤0.02 mg/l ≤10 mg/l 0.18 mg/l 300.0 mg/l 3.0 mg/l
6~9 213.3 mg/l 89.0 mg/l 0.7 mg/l 6~9 213.3 mg/l ≤0.03 mg/l ≤10 mg