初二数学上册一次函数应用题
“初二数学上册一次函数应用题”相关的资料有哪些?“初二数学上册一次函数应用题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初二数学上册一次函数应用题”相关范文大全或资料大全,欢迎大家分享。
一次函数经典应用题
一次函数
一次函数经典应用题
3.某加油站五月份营销一种油品的销售利润(万元)与销售量x(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x为多少时,销售利润为4万元; (2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)
4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示. 根据图像信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
5.邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结
一次函数应用题(提高题)
一次函数应用题
一.解答题(共10小题)
1.(2013?衢州)“五?一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.
(1)求a的值.
(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.
(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?
2.(2013?黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.
(1)根据图象,求y与x之间的函数关系式;
(2)求甲、乙两种品牌的文具盒进货单价;
(3
一次函数应用题—行程问题
一慢车和一快车沿相同路线从A地到相距120千米的B地,所行地路程与时间的函数图象如图所示.试根据图象,回答下列问题:
(1)慢车比快车早出发 小时,快车比慢车少用 小时到达B地; (2)根据图象分别求出慢车和快车路程与时间的解析式. (3)快车用了多少时间追上慢车;此时相距A地多少千米?
周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远? (3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路
甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答: (1)甲车出发多长时间后被乙车追上?
(2)甲车与乙车在距离A地多远处迎面相遇? (3)甲车从A地返回的速度多大时,才能比乙车
初中一次函数典型应用题
--
-- 中考一次函数应用题
近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。
例1 已知雅美服装厂现有A 种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B 种布料0.4米,可获利润50元。若设生产N种型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。
(1)求y 与x 的函数关系式,并求出自变量的取值范围;
(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?
例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;
(2)分别求出月通话50次、100次的电话费;
(3)如果某月的电话费是27.8元,求该月通话的次数。
例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安
初中一次函数典型应用题
--
-- 中考一次函数应用题
近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。
例1 已知雅美服装厂现有A 种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B 种布料0.4米,可获利润50元。若设生产N种型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。
(1)求y 与x 的函数关系式,并求出自变量的取值范围;
(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?
例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;
(2)分别求出月通话50次、100次的电话费;
(3)如果某月的电话费是27.8元,求该月通话的次数。
例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安
初二数学第一学期讲义(15)一次函数应用
一次函数的应用
热热身:
1.下列图中反映的两个变量间的关系中,表示y是关于x的函数的是( )
A B C D
10.已知CD∥AB,∠ABC=Rt∠,AB=8cm,BC=4cm,CD=5cm,点P以1cm/s的速度从点B出发,经B-C-D-A运动到点A,设点P运动时间为t(s),△ABP的面积
2.在直角坐标系中,点P(4,y)在第一象限,且OP与x轴正半轴的夹角为60°,则y的值是( ) A.
43 B.43 C.-3 D.-1 为y(cm2),求:(1)点P在BC上运动时,y关于x
3的函数关系式及自变量x的取值范围;
3.已知一次函数y?kx?b,当?3?x?1时,
(2)当t=4.5s时,y的值是 .
1?y?9,则kb的值为( ) (3)当y的值随t的值的增大而减少时,t的范围是多 A.14 B.-6 C.-6或 14 D.-4或21 少?
D4.若一次函数 其中kb?0y?kx?b和 y?bx?k,的图像如下,则正确的是( )
C
ABP
初二数学第一学期讲义(15)一次函数应用
一次函数的应用
热热身:
1.下列图中反映的两个变量间的关系中,表示y是关于x的函数的是( )
A B C D
10.已知CD∥AB,∠ABC=Rt∠,AB=8cm,BC=4cm,CD=5cm,点P以1cm/s的速度从点B出发,经B-C-D-A运动到点A,设点P运动时间为t(s),△ABP的面积
2.在直角坐标系中,点P(4,y)在第一象限,且OP与x轴正半轴的夹角为60°,则y的值是( ) A.
43 B.43 C.-3 D.-1 为y(cm2),求:(1)点P在BC上运动时,y关于x
3的函数关系式及自变量x的取值范围;
3.已知一次函数y?kx?b,当?3?x?1时,
(2)当t=4.5s时,y的值是 .
1?y?9,则kb的值为( ) (3)当y的值随t的值的增大而减少时,t的范围是多 A.14 B.-6 C.-6或 14 D.-4或21 少?
D4.若一次函数 其中kb?0y?kx?b和 y?bx?k,的图像如下,则正确的是( )
C
ABP
初二数学上册一次函数与几何练习题及答案
初二一次函数与几何题
1、平面直角坐标系中,点A的坐标为(4,0),点P在直线y=-x-m上,且AP=OP=4,则m的值是多少?
2、如图,已知点A的坐标为(1,0),点B在直线y=-x上运动,当线段AB最短时,试求点B的坐标。
3、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线y=1/3x+b恰好将矩形OABC分为面积相等的两部分,试求b的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x轴、y轴分别相交于点A、B,点C在x轴上,若△ABC是等腰三角形,试求点C的坐标。
5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?
y C B O A x y O A x B
6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三
沪科版一次函数应用题精选
一次函数常考题,难题,沪科版
1、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
2、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
3、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈
有两种配货方案(整箱配货):
方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按
沪科版一次函数应用题精选
一次函数常考题,难题,沪科版
1、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
2、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
3、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈
有两种配货方案(整箱配货):
方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按