Matlab差分方程编写H(z)

“Matlab差分方程编写H(z)”相关的资料有哪些?“Matlab差分方程编写H(z)”相关的范文有哪些?怎么写?下面是小编为您精心整理的“Matlab差分方程编写H(z)”相关范文大全或资料大全,欢迎大家分享。

差分方程模型

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

幻灯片1

第七章 差分方程模型

7.1 市场经济中的蛛网模型 7.2 减肥计划——节食与运动 7.3 差分形式的阻滞增长模型 7.4 按年龄分组的种群增长

幻灯片2

7.1 市场经济中的蛛网模型

供大于求

价格下降

减少产量

现 象

数量与价格在振荡

供不应求

增加产量

价格上涨

描述商品数量与价格的变化规律 问 题

商品数量与价格的振荡在什么条件下趋向稳定 当不稳定时政府能采取什么干预手段使之稳定

幻灯片3

蛛 网 模 型

xk~第k时段商品数量;yk~第k时段商品价格

消费者的需求关系

yk?f(xk) 减函数

需求函数

供应函数

生产者的供应关系

增函数

xk?1?h(yk)

yk?g(xk?1)

y

f 0

x

g

f与g的交点P0(x0,y0) ~ 平衡点

y0

P0

x0

一旦xk=x0,则yk=y0,

xk+1,xk+2,…=x0, yk+1,yk+2, …=y0

幻灯片4

yk?g(xk?1)

yk?f(xk)

蛛 网 模 型

设x1偏离x0

xk?1?h(yk)

x1?y1?x2?y2?x3??

xk?x0,yk?y0

xk?x0,yk?y0

差分方程模型

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

幻灯片1

第七章 差分方程模型

7.1 市场经济中的蛛网模型 7.2 减肥计划——节食与运动 7.3 差分形式的阻滞增长模型 7.4 按年龄分组的种群增长

幻灯片2

7.1 市场经济中的蛛网模型

供大于求

价格下降

减少产量

现 象

数量与价格在振荡

供不应求

增加产量

价格上涨

描述商品数量与价格的变化规律 问 题

商品数量与价格的振荡在什么条件下趋向稳定 当不稳定时政府能采取什么干预手段使之稳定

幻灯片3

蛛 网 模 型

xk~第k时段商品数量;yk~第k时段商品价格

消费者的需求关系

yk?f(xk) 减函数

需求函数

供应函数

生产者的供应关系

增函数

xk?1?h(yk)

yk?g(xk?1)

y

f 0

x

g

f与g的交点P0(x0,y0) ~ 平衡点

y0

P0

x0

一旦xk=x0,则yk=y0,

xk+1,xk+2,…=x0, yk+1,yk+2, …=y0

幻灯片4

yk?g(xk?1)

yk?f(xk)

蛛 网 模 型

设x1偏离x0

xk?1?h(yk)

x1?y1?x2?y2?x3??

xk?x0,yk?y0

xk?x0,yk?y0

差分方程模型

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

模型1 蛛网模型

经济背景与问题:在自 由市场经济中,有些商品的生产、销售呈现明显的周

期性。农业产品往往如此,在工业生产中,许多商品的生产销售是有周期性的,表现在:商品的投资、销售价格、产量、销售量在一定时期内是稳定的,因而整个某个较长的时期内这些经济数据表现为离散变量的形式。在这些因素中,我们更关心的是商品的销售价格与生产产量这两个指标,它们是整个经营过程中的核心因素,要想搞好经营,取得良好的经济效益,就必须把握好这两个因素的规律,作好计划。试分析市场经济中经营者根据市场经济的规律,如何建立数学模型来表现和分析市场趋势的。 模型假设与模型建立

将市场演变模式划分为若干段,用自然数n来表示; 设第n个时段商品的数量为

,价格为

,n=1,2….;

由于价格与产量紧密相关,因此可以用一个确定的关系来表现:即设有

(3. 3)

这就是需求函数,f 是单调减少的对应关系; 又假设下一期的产量

是决策者根据这期的价格决定的,即:设

h是单调增加的对应关系, 从而,有关系:

(3.4)

g 也是单调增加的对应关系. 因此可以建立差分方程:

(3.5) (3.6)

这就是两个差分方程。属

差分方程(word97-03)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

差分方程及高等数学在经济学中的应用

前面我们所研究的变量基本上是属于连续变化的类型,但在经济管理或其它实际问题中,大多数变量是以数列形式变化的,如银行中的定期存款按所设定的时间等间隔计息,国家财政预算按年制定等。通常称这类变量为离散型变量。对这类变量,我们可以得到在不同取值点上的各离散变量之间的关系,如递推关系等。描述各离散变量之间关系的数学模型称为离散型模型。求解这类模型就可以得到离散型变量的变化规律。本章将介绍在经济学和管理科学中最常见的一种离散型数学模型——差分方程。

用数学方法解决实际问题,首先要构建该问题的数学模型,即找出该问题的函数关系。然后再用数学方法结合经济意义进行求解,解释经济意义,以期对经济运行进行分析干预。本章我们还将通过介绍几种常用的经济函数的建立及求解,以期引导学生掌握分析解决具体经济问题的思想方法。

§1 差分方程及其在经济学中的应用

本节主要介绍差分方程的概念、性质及求解。重点掌握一阶差分方程的求解。 一、差分的概念与性质

一般地,在连续变化的时间范围内,变量y关于时间t的变化率是用dy来刻画的;对离散型的变量y,

dt我们常取在规定的时间区间上的差商?y来刻画变量y的变化率。如果选择?t?1,则

微分方程与差分方程_详解与例题

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第七章 常微分方程与差分方程

常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。

【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler)方程;微分方程的简单应用。

【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。

【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可

用matlab求解差分方程

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

差分方程 matlab

Matlab求解差分方程问题 用Matlab求解差分方程问题

一阶线性常系数差分方程

高阶线性常系数差分方程

线性常系数差分方程组

差分方程 matlab

差分方程是在离散时段上描述现 实世界中变化过程的数学模型

例1、 某种货币1年期存款的年利率是r , 现存入M元,问年后的本金与利息之和 是多少? Xk+1=(1+r)xk , k = 0 , 1 , 2

以k=0时x0=M代入,递推n次可得n年后本息为

xn = (1 + r ) M

n

差分方程 matlab

污水处理厂每天可将处理池的污水浓度 降低一个固定比例q,问多长时间才能将 污水浓度降低一半? 记第k天的污水浓度为ck,则第k+1天的污 水浓度为 ck+1=(1-q)ck,k=0,1,2, 从k=0开始递推n次得

cn = (1 q) c0

n

以cn=c0/2代入即求解。

差分方程 matlab

一阶线性常系数差分方程

濒危物种的自然演变和人工孵化 问题 Florida沙丘鹤属于濒危物种,它在较好

自然环境下,年均增长率仅为1.94%,而在中 等和较差环境下年均增长率分别为 -3.24% 和 -3.82%,如果在某自然保护区内开始有100只 鹤,建立描述其数量变化规律的模

微分方程与差分方程_详解与例题

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第七章 常微分方程与差分方程

常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点内容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。

【数学一大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli)方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler)方程;微分方程的简单应用。

【数学二大纲内容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。

【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可

一维导热方程 有限差分法 matlab实现

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第五次作业(前三题写在作业纸上)

一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf文件,热扩散系数α=const,

?T?2T??2 ?t?x1. 用Tylaor展开法推导出FTCS格式的差分方程

2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。

4. 编写M文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得

到,添加,修改后得到。) function rechuandaopde

%以下所用数据,除了t的范围我根据题目要求取到了20000,其余均从pdf中得来 a=0.00001;%a的取值 xspan=[0 1];%x的取值范围 tspan=[0 20000];%t的取值范围

ngrid=[100 10];%分割的份数,前面的是t轴的,后面的是x轴的 f=@(x)0;%初值

g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二

[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t);

mesh

一维导热方程 有限差分法 matlab实现

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第五次作业(前三题写在作业纸上)

一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf文件,热扩散系数α=const,

?T?2T??2 ?t?x1. 用Tylaor展开法推导出FTCS格式的差分方程

2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。

4. 编写M文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得

到,添加,修改后得到。) function rechuandaopde

%以下所用数据,除了t的范围我根据题目要求取到了20000,其余均从pdf中得来 a=0.00001;%a的取值 xspan=[0 1];%x的取值范围 tspan=[0 20000];%t的取值范围

ngrid=[100 10];%分割的份数,前面的是t轴的,后面的是x轴的 f=@(x)0;%初值

g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二

[T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t);

mesh

利用有限差分和MATLAB矩阵运算直接求解二维泊松方程

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

利用有限差分和MATLAB矩阵运算直接求解二维泊松方程

第 3卷第4 2期 21 0 0年 4月

红外技术I fa e e h o o y n rdT c n l g r

Vb13 N O. .2 4

Ap . 2 1 r 00

<材料与器件>

利用有限差分和 MA L B矩阵运算直接求解二维泊松方程 T A王忆锋,唐利斌(昆明物理研究所,云南昆明 6 0 2 ) 5 2 3

摘要:根据有限差分法原理,将求解范围用等间距网格划分为一系列离散节点后,二维泊松方程可转化为用一个矩阵方程表示的关于各未知节点的多元线性方程组。利用 MA L B提供的矩阵左除命 TA

令,即可得到各未知节点的函数近似值。该方法概念简单,使用方便,不需要花费较多精力编程即可以求解大型线性方程组。 关键词:半导体;泊松方程;有限差分法;MA L T AB中图分类号:T 0 N3 1文献标识码:A文章编号: 10—8 12 1)40 1—4 0 18 9 (0 00—2 30

Di e tSo uto fTwo di e i na is n Eq to r c l ino - m nso l Po s o ua i n

wih Fi ieDi e e c n