二次根式的知识点归纳免费

“二次根式的知识点归纳免费”相关的资料有哪些?“二次根式的知识点归纳免费”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次根式的知识点归纳免费”相关范文大全或资料大全,欢迎大家分享。

二次根式知识点归纳及题型

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

一. 利用二次根式的双重非负性来解题(a 0(a≥0),即一个非负数的算术平方根是一个非负数。)

题型一:判断二次根式

(1

11

x>0)

、、

x

yx

. x≥0,y ≥0)

(2

x 0

y 2

x 0 x y中,二次根式有( ) A. 2个 B. 3个 C. 4个 D. 5个 (3)下列各式一定是二次根式的是( )

A. 题型二:判断二次根式有没有意义 1、写出下列各式有意义的条件: (1)x 4 (2)

B.

C.

D.

11

8a (3)m2 4 (4)

x3

2

x 2

;3、若

3 xx 2 x

成立,则x满足_____________。

练习:1.下列各式中一定是二次根式的是( )。 A、 3; B、2.x取何值时,下列各式在实数范围内有意义。

x; C、x2 1; D、x 1

(1)

(5)若x(x 1)

(2)

1

(3)

2x 1

x 1

.

则x的取值范围是 (6)若x 3 x 3,则x的取值范围是 。 xx 1,

x 1

3.若m 1有意义,则m能取的最小整数值是 ;

则正整数m的最小值是_____

二次根式的知识点汇总

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

sdf

二次根式的知识点汇总

知识点一:二次根式的概念

形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围

1.二次根式有意义的条件:由二次根式的意义可知,当a≧0

时,有意义,是二次根式,所以

要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0

时,没有意义。

知识点三:二次根式()的非负性

()表示a 的算术平方根,也就是说,(

)是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,

所以非负数(

)的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方

根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

知识点四:二次根式()的性质

()

文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,

二次函数知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数知识点

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最

二次函数知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数知识点

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最

二次函数知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数知识点

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。

2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质

c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最

二次根式

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

精品专题课程 · 初中数学

第十讲 二次根式

一、二次根式考点

考点: 1、二次根式的相关概念; 2、最简二次根式; 3、化简二次根式; 4、利用二次的性质进行运算; 5、求代数式的值; 6、比较二次根式的大小; 7、二次根式的开放性问题; 8、二次根式的应用。 二、知识梳理/提炼

1.二次根式的定义:式子 叫做二次根式. 2.二次根式的性质 (1)

、?a?=a(a≥0)

2a2=a,

(2)ab=a·b(a≥0,b≥0),aa=(a≥0,b>0). bb3.最简二次根式:符合条件(1)被开方式中不含有开得尽方的数或因式,(?2)被开方式中不含有分母,符合以上两个条件的二次根式叫最简二次根式.

4.分母有理化

(1)互为有理化因式:?两个带有二次根式的代数式相乘不再含有二次根式,则这两个代数式叫做互为有理化因式,常见的有理化因式有:a与±a,a+b与a-b,a+b与a-b,ma+nb与ma-nb;

(2)分母有理化:把分母中的根号化去过程,叫做分母有理化,?方法是在分子分母上同乘以分母的有理化因式.

5.二次根式的运算:(1)加减运算:化成同类

二次函数知识点详解口诀

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次函数知识点详解

知识点一、平面直角坐标系

1,平面直角坐标系

在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当a?b时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征

1、各象限内点的坐标的特征

点P(x,y)在第一象限?x?0,y?0

点P(x,y)在第二象限?x?0,y?0 点P(x,y)在第三象限?x?0,y?0 点P(x,y)在第四象限?x?0,y?0

2、坐标轴上的点的特征

点P(x,y)在x轴上?y?0,x为任意实数 点P(x,y)在y轴上?x?0,y为任意实数

点P(x,

浙教版二次函数知识点

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

浙教版二次函数知识点

浙教版二次函数知识点

二次函数在初中数学中占有重要位置,特别是在中考的最后一道大题,算是数学大题中的压轴题,接下来为你整理了浙教版二次函数知识点,一起来看看吧。

浙教版二次函数知识点I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和B(x₂,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b)/4a x₁,x₂=(-b±√b-4ac)

《二次函数》知识点总结精品

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

初三精品资料 付国教案

《二次函数》知识点总结

一、二次函数的概念

1、定义:一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x的二次函数.

2、注意点:

(1)二次函数是关于自变量x的二次式,二次项系数a必须为非零实数,即a≠0,而

b、c为任意实数。 (2)当b=c=0时,二次函数y?ax2是最简单的二次函数。

(3)二次函数y?ax2?bx?c(a,b,c是常数,a?0)自变量的取值为全体实数

(ax?bx?c为整式)

3、三种函数解析式:

(1)一般式: y=ax2+bx+c(a≠0),

2bb4ac?b2, 对称轴:直线x=? 顶点坐标:( ? )

2a2a4a(2)顶点式:y?a?x?h??k(a≠0),

2 对称轴:直线x=h 顶点坐标为(h,k )

(3)交点式:y=a(x-x1)(x-x2)(a≠0),

对称轴:直线x=

x1?x2 2 (其中x1、x2是二次函数与x

二次根式以及二次根式的乘除练习题20130807

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

二次根式以及二次根式的乘除练习题

一、选择题

1.下列式子中,不是二次根式的是( )

1 x2.已知一个正方形的面积是5,那么它的边长是() 1A.5 B.5 C.D.以上皆不对 5 A.4 B.16 C.8 D.

3.使式子?(x?5)2有意义的未知数x有( )个. A.0 B.1 C.2 D.无数

4.下列各式中15、3a、b2?1、a2?b2、m2?20、?144,二次根式的个数是( ).

A.4 B.3 C.2 D.1 5.数a没有算术平方根,则a的取值范围是( ). A.a>0 B.a≥0 C.a<0 D.a=0

116.(2)2?(?2)2的值是( ).

33 A.0 B.

22 C.4 D.以上都不对 337.a≥0,a2、(?a)2、-a2,比较它们的结果,下面选项中正确的是( ). A.a2=(?a)2≥-a2 B.a2>(?a)2>-a2 C.a2<(?a)2