模糊C均值聚类算法中的隶属度函数

“模糊C均值聚类算法中的隶属度函数”相关的资料有哪些?“模糊C均值聚类算法中的隶属度函数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“模糊C均值聚类算法中的隶属度函数”相关范文大全或资料大全,欢迎大家分享。

模糊c均值聚类算法

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

聚类

第2 2卷第 2期Vo . 2 No. 12 2

重庆工学院学报(自然科学)Ju a o hn q gIstt o eh o g ( a r c ne orl f og i tue f cnl y N t a Si c ) n C n ni T o ul e

20 0 8年 2月F b.2 0 e 08

模糊 c均值聚类算法刘蕊洁,金波,张刘锐(州交通大学数理与软件工程学院,兰兰州、

707 ) 30 0‘ : ^: 0 d^

‘ 0=

‘:

^

:

‘‘:

‘ 0

摘要:模糊聚类是一种重要数据分析和建模的无监督方法 .对模糊聚类进行了概述,理论和实从验 2个方面研究了模糊 C均值聚类算法,对该算法的优点及存在的问题进行了分析 .并结果表

明,该算法设计简单,应用范围广,仍存在容易陷入局部极值点等问题,但还需进一步研究 .关键词:模糊 C均值算法;模糊聚类;聚类分析文献标识码: A文章编号:6 1 17一 ̄2 ( 0 )2 19 3 42 8 o一o3—0 0中图分类号:P 8 T 11

Fu z M e n u trng Al o ih z y c- a s Clse i g rt m

LU R i i, H N nb,LU R i

模糊c均值聚类 FCM算法的MATLAB代码

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

模糊c均值聚类 FCM算法的MATLAB代码

我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:

FCM算法的两种迭代形式的MATLAB代码写于下,也许有的同学会用得着: m文件1/7:

function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm) % 模糊 C 均值聚类 FCM: 从随机初始化划分矩阵开始迭代

% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm) % 输入:

% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集, % Data 的每一行为一个观测样本的特征矢量,S 为特征矢量 % 的维数,N 为样本点的个数 % C: 聚类数,1

% plotflag: 聚类结果 2D/3D 绘图标记,0 表示不绘图,为缺省值 % M: 加权指数,缺省值为 2

% epsm: FCM 算法的迭代停止阈值,缺省值

模糊c均值聚类 FCM算法的MATLAB代码

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

模糊c均值聚类 FCM算法的MATLAB代码

我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:

FCM算法的两种迭代形式的MATLAB代码写于下,也许有的同学会用得着: m文件1/7:

function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm) % 模糊 C 均值聚类 FCM: 从随机初始化划分矩阵开始迭代

% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm) % 输入:

% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集, % Data 的每一行为一个观测样本的特征矢量,S 为特征矢量 % 的维数,N 为样本点的个数 % C: 聚类数,1

% plotflag: 聚类结果 2D/3D 绘图标记,0 表示不绘图,为缺省值 % M: 加权指数,缺省值为 2

% epsm: FCM 算法的迭代停止阈值,缺省值

模糊C均值聚类算法的C++实现代码

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

模糊

C均值聚类算法的实现

研究背景

聚类分析是多元统计分析的一种,也是无监督模式识别的一个重要分支,在模式分类 图像处理和模糊规则处理等众多领域中获得最广泛的应用。它把一个没有类别标记的样本按照某种准则划分为若干子集,使相似的样本尽可能归于一类,而把不相似的样本划分到不同的类中。硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质,而模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流。

模糊聚类算法是一种基于函数最优方法的聚类算法,使用微积分计算技术求最优代价函数,在基于概率算法的聚类方法中将使用概率密度函数,为此要假定合适的模型,模糊聚类算法的向量可以同时属于多个聚类,从而摆脱上述问题。 模糊聚类分析算法大致可分为三类

1)分类数不定,根据不同要求对事物进行动态聚类,此类方法是基于模糊等价矩阵聚类的,称为模糊等价矩阵动态聚类分析法。

2)分类数给定,寻找出对事物的最佳分析方案,此类方法是基于目标函数聚类的,称为模糊C均值聚类。

3)在摄动有意义的情况下,根据模糊相似矩阵聚类,此类方法称为基于摄动的模糊聚类分析法

我所学习的是

c均值聚类算法实例

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

close all clear all clc

dataset=load('F:\\experience1.mat'); center1=[1 1 1;-1 1 -1]; center2=[0 0 0;1 1 -1]; center3=[0 0 0;1 1 1;-1 0 2];

center4=[-0.1 0 0.1;0 -0.1 0.1;-0.1 -0.1 0.1]; %%%%%%%%kmeans [k_class1,C1,sumd1,D1]=kmeans(dataset.data,2,'start',center1); one1=dataset.data(find(k_class1==1),:); second1=dataset.data(find(k_class1==2),:); scatter3(one1(:,1),one1(:,2),one1(:,3),'*','r') hold on

scatter3(second1(:,1),second1(:,2),second1(:,3),'o','g') hold off

xlabel('X1','Fontsize',15); ylabel('X2','Fon

模糊控制 - 隶属度函数

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

第6章 模糊逻辑【转】 2009-04-16 21:48

高斯隶属函数

函数 gaussmf

格式 y=gaussmf(x,[sig c])

说明 高斯隶属函数的数学表达式为: ,其中 为参数,x为自变量,sig为数学表达式中的参数 。 例6-1 >>x=0:0.1:10;

>>y=gaussmf(x,[2 5]); >>plot(x,y)

>>xlabel('gaussmf, P=[2 5]') 结果为图6-1。

图6-1

6.1.2 两边型高斯隶属函数

函数 gauss2mf

格式 y = gauss2mf(x,[sig1 c1 sig2 c2])

说明 sig1、c1、sig2、c2为命令1中数学表达式中的两对参数 例6-2

>>x = (0:0.1:10)';

>>y1 = gauss2mf(x, [2 4 1 8]); >>y2 = gauss2mf(x, [2 5 1 7]); >>y3 = gauss2mf(x, [2 6 1 6]); >>y4 = gauss2mf(x, [2 7 1 5]); >>y5 = gauss2mf(x, [2 8 1 4]); >>plot(x, [y1 y2 y3 y4 y5]);

>>set(

【原创】数据挖掘课程论文:基于SVD的模糊C均值聚类的协同过滤算法附数据代码

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

上海大学2013-2014学年冬季学期硕士研究生课程考试

课程名称:数据挖掘与商务智能文献阅读课课程编号:29SBG9016课程名称:博弈论文献阅读课课程编号: 291101911

课程名称:系统理论与战略管理文献阅读课课程编号: 291101904

论文题目:基于SVD的模糊C均值聚类的协同过滤算法

研究生姓名(学号):

论文评价:

论文成绩:

任课教师:评阅日期:2014年6月

基于SVD的模糊C均值聚类的协同过滤算法

摘要:针对传统协同过滤算法普遍存在的实时性、稀疏性和扩展性的问题,本文提出了一种基于SVD 矩阵填充技术的模糊C均值聚类协同过滤算法。首先利用SVD降维方法对原始的高维稀疏矩阵进行预测填充,得到一个缺失值较少的评分矩阵,然后利用模糊C均值聚类算法在填充完整的数据上对用户进行聚类,最后在用户所属类中寻找目标用户最近邻并产生推荐。该算法利用用户与项目之间的潜在关系克服了稀疏性问题,同时保留了聚类方法可离线建模、可扩展性好等优点。在MovieLens数据集上实验结果表明,该方法确实可提高协同过滤推荐算法的推荐精度。

关键词:SVD;模糊C均值聚类;协同过滤;推荐系统

SVD-Based Fuzzy C-Means Clustering Colla

基于模糊聚类和信息熵的综合评价算法

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

第22卷 第6期2004年11月

文章编号:1671-5896(2004)06-0643-05

吉林大学学报(信息科学版)

JournalofJilinUniversity(InformationScienceEdition)Vol.22 No.6

Nov.2004

基于模糊聚类和信息熵的综合评价算法

张运凯1,王方伟1,戴敬书2,黄文艳3,陈艳红4

(1.河北师范大学网络中心,河北石家庄050016;2.河北电视台新闻中心,河北石家庄050031;3.河北师范大学数学与信息学院,河北石家庄050016;4.秦皇岛外国语职业学院,河北秦皇岛066311)

摘要:针对目前综合评价技术存在的主旨不相协调、忽略了简洁性与有效性问题,在分析已有算法的基础上,提出了一种基于模糊聚类和信息熵的综合评价算法,该算法有针对性地克服了原有评价算法的缺陷,具有较好的实用性,最后通过实际数据对该算法的有效性进行了验证。关键词:模糊聚类;信息熵;综合评价中图分类号:TP312   文献标识码:A

Newcomprehensiveevaluationalgorithmbasedonfuzzy

clusteringandinformationentropy

ZHANGYun-kai1,WAN

模糊聚类法在图像分割中的应用

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

模糊聚类法在图像分割中的应用

摘要:模糊聚类算法是模糊理论中的一个重要的分支,是现今模糊理论中应用最广泛的领域之一,并取得了丰富的成果。由于图像所具有的模糊性,近年来一些学者将模糊理论引入到图像处理中,应用模糊理论进行图像分割,图像增强以及边缘检测。本文在研究模糊理论的基础上,对模糊聚类算法在图像分割中的应用进行了一定的探讨。

关键词:模糊理论,图像分割,模糊聚类 0.引言:

随着计算机技术的飞速发展,数字图像分割技术触及工业检测、环境监测、军事和宇宙探索等多诸多学科领域。从统计学的观点上看,图像分割可以分为基于概率统计的硬分割和基于模糊数学的软分割。在实际应用中,图像分割结果受到图像许多方面特征的制约,例如:图像的灰度、纹理或颜色等硬分割方法在综合考虑这些因素时往往顾此失彼,因而分割结果并不理想但若将上述因素用模糊集合来表示,利用隶属度综合考虑各因素对图像分割结果的影响,则能准确反映图像的特征。因此,基于模糊数学的模式分类在图像分割中得到了广泛应用基于模糊聚类的软分割具有以下几个鲜明的特点:1)模糊聚类分割算法不使用训练样本,这使得非监督图像分割成为可能。2) 在进行模糊聚类分割算法构建时,只需建立模糊优化函数,仅有隶属度聚类中心和核

函数带

聚类算法总结

标签:文库时间:2025-01-15
【bwwdw.com - 博文网】

1.聚类定义

“聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有一

些相似的属性” ——wikipedia “聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对

象有很大的相似性,而不同簇间的对象有很大的相异性。” ——百度百科

说白了,聚类(clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。简单理解,如果一个数据集合包含N个实例,根据某种准则可以将这N个实例划分为m个类别,每个类别中的实例都是相关的,而不同类别之间是区别的也就是不相关的,这个过程就叫聚类了。

2.聚类过程:

1) 数据准备:包括特征标准化和降维.

2) 特征选择:从最初的特征中选择最有效的特征,并将其存储于向量中.

3) 特征提取:通过对所选择的特征进行转换形成新的突出特征.

4) 聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的