初三数学二次根式题库

“初三数学二次根式题库”相关的资料有哪些?“初三数学二次根式题库”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初三数学二次根式题库”相关范文大全或资料大全,欢迎大家分享。

初三数学《二次根式》PPT复习课件

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

初三数学《二次根式》PPT复习课件

二次根式复习课

初三数学《二次根式》PPT复习课件

考试要求 了解二次根式的概念及其加、减、乘、除 了解二次根式的概念及其加、 运算法则, 运算法则,会用它们进行有关实数的简单 四则运算(不要求分母有理化) 四则运算(不要求分母有理化) 能用有理数估计一个无理数的大致范围。 能用有理数估计一个无理数的大致范围。

初三数学《二次根式》PPT复习课件

知识结构二次根式概念 相关概念 最简二次根式 同类二次根式 二 次 根 式

a ≥ 0(a ≥ 0)二次根式的性质

a2 = a( a ) 2 = a ( a ≥ 0)

二次根式的运算

二次根式乘除法则首页 上页 下页

初三数学《二次根式》PPT复习课件

知识巩固最简二次根式①被开方数的因数是整数,因式是整式。 被开方数的因数是整数,因式是整式。 ②被开方数中不含能开得尽方的因数或因式。 被开方数中不含能开得尽方的因数或因式。 ③分母中不含有二次根式。 分母中不含有二次根式。

30

2.5 x

50

2 x( x + y ) 2

x2 + y2

首页

上页

下页

初三数学《二次根式》PPT复习课件

知识巩固同类二次根式几个二次根式化成最简二次根式后, 几个二次根式化成最简二次根式后, 如果被开方数相

初三数学二次函数复习教案

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

全国最大的个性化品牌辅导机构

龙文教育个性化辅导教案 年 月 日 教师 学生 授课时间 点 授课层次 初三 授课课题 二次函数 课型 复习课 1、知识目标:理解二次函数的概念,掌握二次函数y=ax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象。 教学目标 2、能力目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质 3、情感态度与价值观: 1、重点: 1.用配方法求二次函数的顶点、对称轴,根据图象概括二次函数 y=ax 图象的性质。 2.用待定系数法求函数的解析式、运用配方法确定二次函数的特征。 教学重点和难点 3.利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。 2、难点: 1.二次函数图象的平移。 2.会运用二次函数知识解决有关综合问题。 3.将实际问题转化为函数问题,并利用函数的性质进行决策 教学内容:

初三数学二次函数培优卷

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

二次函数考点分析

初三数学培优卷:二次函数考点分析培优

★★★二次函数的图像抛物线的时候应抓住以下五点:

开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

2

★★二次函数y=ax+bx+c(a,b,c是常数,a≠0)

b4ac b2

一般式:y=ax+bx+c,三个点 顶点坐标(-,).

2a4a

2

2

顶点式:y=a(x-h)+k,顶点坐标对称轴 顶点坐标(h,k)

★★★a b c作用分析

│a│的大小决定了开口的宽窄,│a│越大,开口越小,│a│越小,开口越大,

a,b的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y轴,当a,b同号时,对称轴x=-

bb<0,即对称轴在y轴左侧,当a,b 异号时,对称轴x=->0,即对称轴在y轴右侧,2a

c 的符号决定了抛物线与y轴交点的位置,c=0时,抛物线经过原点,c>0时,与y轴交于正半轴;c<0时,与y 轴交于负半轴,以上a,b,c的符号与图像的位置是共同作用的,也可以互相推出.

交点式:y=a(x- x1)(x- x2),(有交点的情况) 与x轴的两个交点坐标x1

,x2 对称轴为h

x1 x2

2

1个单位,所得到的图象对应的二次函数关系式是y (x 1) 2则原

初三数学二次函数培优卷

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

二次函数考点分析

初三数学培优卷:二次函数考点分析培优

★★★二次函数的图像抛物线的时候应抓住以下五点:

开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.

2

★★二次函数y=ax+bx+c(a,b,c是常数,a≠0)

b4ac b2

一般式:y=ax+bx+c,三个点 顶点坐标(-,).

2a4a

2

2

顶点式:y=a(x-h)+k,顶点坐标对称轴 顶点坐标(h,k)

★★★a b c作用分析

│a│的大小决定了开口的宽窄,│a│越大,开口越小,│a│越小,开口越大,

a,b的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y轴,当a,b同号时,对称轴x=-

bb<0,即对称轴在y轴左侧,当a,b 异号时,对称轴x=->0,即对称轴在y轴右侧,2a

c 的符号决定了抛物线与y轴交点的位置,c=0时,抛物线经过原点,c>0时,与y轴交于正半轴;c<0时,与y 轴交于负半轴,以上a,b,c的符号与图像的位置是共同作用的,也可以互相推出.

交点式:y=a(x- x1)(x- x2),(有交点的情况) 与x轴的两个交点坐标x1

,x2 对称轴为h

x1 x2

2

1个单位,所得到的图象对应的二次函数关系式是y (x 1) 2则原

初三数学二次函数测试题

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

二次函数测试题 、选择题(每题 3分,共36分) x 的二次函数的关系式是 2 B.y -ax+2=0 x(x>0),面积为 1 2 B. y x 4 3抛物线y=x 2-8x+c 的顶点在x 轴上,贝U A.-16 B.-4 1. 在下列关系式中,y 是 2 A. 2xy+x =1 2. 设等边三角形的边长为 1 2 A. y x 2 2 .… (2 ) C.y+x -2=0 y ,则y 与x 的函数关系式是( ) 门 43 2 D. y x 4 2 2 D.x -y +4=0 C 品2 C. ypx c 等于( ) C.8 D.16 2 y=ax +bx+c ( C. 对称轴平行于 y 轴 对称轴是 y 轴 5.—次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是( D. A. B. 4.若直线y=ax + b (a ^0在第二、四象限都无图像,则抛物线 A.开口向上,对称轴是 y 轴 B.开口向下,

C.开口向上,对称轴平行于 y 轴

D.开口向下, 2

2 的方程ax +bx+c=0的另一个解为( ) 6. 若y=ax 2+ bx+c 的部分图象如上图所示,则关于 x

初三数学二次函数知识点总结

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

砺智培训学校 1 / 11

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,实数.

2. 二次函数y?ax2?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随0? ?0,0? ?0,y轴 x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.

2. y?ax2?c的性质: 上加下减。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随c? ?0,c? ?0,y轴 x的增大而减小;x?0时,y有最小值c. x?0时,y随x

初三数学二次函数知识点总结

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

砺智培训学校 1 / 11

一、二次函数概念:

b,c是常数,a?0)的函数,叫做二次函数。 1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,实数.

2. 二次函数y?ax2?bx?c的结构特征:

⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.

b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式

1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随0? ?0,0? ?0,y轴 x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.

2. y?ax2?c的性质: 上加下减。

a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随c? ?0,c? ?0,y轴 x的增大而减小;x?0时,y有最小值c. x?0时,y随x

青岛版初三数学二次函数测试题

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

供学生学习使用。

青岛版初三数学下册二次函数单元测试试题

一、精心选一选(12×4=48分)

1.若一次函数y=3x-14的值大于1,则自变量x满足条件是( )

A、x<5 B、x>5 C、x=5 D、x≠5

2.下列函数解析式中,y是x的反比例函数的是( )

A、圆的面积S与半径r的关系

B、圆柱的体积一定,它的底面面积S与圆柱高h的关系

C、长方形的周长一定,它的一边a与邻边b的关系

D、家庭月收入一定,每月的支出x与存款额y的关系

4.当k>0,x<0时,反比例函数y=的图像在( )

A、第一象限 B、第二象限 C、第三象限 D、第四象限

5.点(0,0)是( )

A、抛物线y=x2的最低点 B、抛物线y=-x2的最低点

C、抛物线y=x2的最高点 D、抛物线y=-x2和y=x2的最高点

6.下列关系式中,属于二次函数的是(x为自变量)( )

A. B. C. D.

7. 函数y=x2-2x+3的图象的顶点坐标是( )

A. (1,-4) B.(-1,2) C. (1,2) D.(0,3)

8. 抛物线y=2(x-3)2的顶点在(

二次根式

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

精品专题课程 · 初中数学

第十讲 二次根式

一、二次根式考点

考点: 1、二次根式的相关概念; 2、最简二次根式; 3、化简二次根式; 4、利用二次的性质进行运算; 5、求代数式的值; 6、比较二次根式的大小; 7、二次根式的开放性问题; 8、二次根式的应用。 二、知识梳理/提炼

1.二次根式的定义:式子 叫做二次根式. 2.二次根式的性质 (1)

、?a?=a(a≥0)

2a2=a,

(2)ab=a·b(a≥0,b≥0),aa=(a≥0,b>0). bb3.最简二次根式:符合条件(1)被开方式中不含有开得尽方的数或因式,(?2)被开方式中不含有分母,符合以上两个条件的二次根式叫最简二次根式.

4.分母有理化

(1)互为有理化因式:?两个带有二次根式的代数式相乘不再含有二次根式,则这两个代数式叫做互为有理化因式,常见的有理化因式有:a与±a,a+b与a-b,a+b与a-b,ma+nb与ma-nb;

(2)分母有理化:把分母中的根号化去过程,叫做分母有理化,?方法是在分子分母上同乘以分母的有理化因式.

5.二次根式的运算:(1)加减运算:化成同类

中考数学二次根式复习教案1苏科版

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

二次根式

课题 二次根式 上课时间 课时 第 课时 知识与能力 教学 目标 1、了解二次根式的概念 2、能根据二次根式的意义确定被开方数中字母的取值范围 过程与方法 经历知识产生的过程,探索新知识.讨论法 情感态度与价值观 培养学生分析问题、解决问题的能力。培养学生勇于创新的精神。 教学重点 教学难点 二次根式的概念以及求二次根式的值 二次根式的双重非负性 教学方法 合作讨论法、自主练习法 教 具 多媒体,三角板 教学内容及教学过程 一、温过而知新 (1)3的平方根是______ (2)3的算术平方根是_______ (3)?5有意义吗?为什么? (4)一个非负数a的算术平方根应表示为__________ 平方根的性质与算术平方根的性质 二、创设情境 走进生活 1.东方明珠相关计算 2. 观察代数式,这些代数式有什么共同的特点? 根指数都是2,被开方数都是非负数 像a?2500,2S?,2S这样表示的算术平方根,且二次根号内含有字母的代数式叫做二次根式。a能用什么式子表示? 表示 a (a≥0) 3. 注意:因为负数没有平方根,所以在式子