二次函数图像平移规律讲解视频
“二次函数图像平移规律讲解视频”相关的资料有哪些?“二次函数图像平移规律讲解视频”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数图像平移规律讲解视频”相关范文大全或资料大全,欢迎大家分享。
二次函数图像性质
数学组宫平
教学目标: 教学目标 1 会用描点法画出二次函数 的图像 开口方向,对称轴 顶点坐标 开口方向 对称轴,顶点坐标 对称轴 3 培养学生经历由具体到一般的探索事物的 规律的过程
y = a( x h) + k2
y = a ( x h) 2 + k 的 2 会说出二次函数图像
复习归纳:完成下列两表 复习归纳 完成下列两表 填表
抛物线
开口方向 对称轴 顶点坐标2
y = 0.5x2
开口向下 开口向下 开口向下
直线X=0 直线
(0,0) (0,1) (0,-1)
y = 0.5x +1
直线X=0 直线
y = 0.5x 12
直线X=0 直线
填表: 填表
抛物线
开口方向 对称轴直线X=0 直线
顶点坐 标(0, 0) (1, 0)
y = 2x
2
开口向上2
y = 2(x 1)
直线X=1 开口向上 直线2
y = 2( x + 1)
直线X=-1 开口向上 直线
(-1, 0)
新课讲授: 新课讲授操作题1:在同一坐标系内 画出函数 操作题 在同一坐标系内,画出函数 在同一坐标系内
1 2 y = x 1 2
1 2 y = ( x + 1) 1 2
1 2 y= x 2的图像. 的图像
指导:(1) 列表时 要合理取值 首先考虑对称性 其次尽量取整 列表时,要合
初中二次函数考题规律
初中二次函数考题规律
例1 已知以x为自变量的二次函数y=(m-2)x2+m2-m-2图像经过原点,则m的值是
例2 如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数y=kx2+bx-1的图像大致是( )
a b c d
例3 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=3(5),求这条抛物线的解析式。例4 已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-32 (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标。例5 已知⊿ABC是边长为4的正三角形,AB在x轴上,点C在第一象限,AC与y轴交于点D,点A的坐标为(—1,0),求 (1)B,C,D三点的坐标; (2)抛物线经过B,C,D三点,求它的解析式; (3)过点D作DE∥AB交过B,C,D三点的抛物线于E,求DE的长。例6 把抛物线y=3x2先向上平移2个单位,再
2.4二次函数图像导学案
2.4二次函数的图像(2)导学案
一、学习目标
1、经历探索二次函数y?ax2?bx?c的图象的作法和性质的过程 2、推导二次函数y?ax2?bx?c的对称轴和顶点坐标公式 二、学习过程 旧知回顾:
222
1、说出图象(1) y=2(x-3) -5 (2)y= -0.5(x+1)(3) y = 3(x+4)+2
的开口方向、增减性、对称轴和顶点坐标
2. 它们分别可以看成是由哪个函数图象通过怎样的平移得到? 探索新知 活动一、
试用配方法把二次函数y=-x2-6x+5化为y=a(x-h)+k的形式并完成下表:
活动二、(用配方法求二次函数的对称轴和顶点坐标)
例:求二次函数y=ax2+bx+c,图像的对称轴和顶点坐标
同步练习:
(1)确定下列二次函数图像的对称轴和顶点坐标
(1)y=2x2-12x+13 (2)y=-5x2+80x-319 (3)y=2(x-
(2)两条钢缆具有相同的抛物线形状.按照图中的直角坐标系,左面的一条抛物线可以用y=0.0225x2+0.9x+10表示,而且左右两条抛物线关手y轴对称.
⑴钢缆的最低点到桥面的距离是少?
122
开口方向 顶点 对称轴 最值 增减性(对称轴左侧) 2y=-
《二次函数的图像(1)》教学设计
《二次函数的图像(1)》教学设计
教学目标:
1、经历描点法画函数图像的过程;
2、学会观察、归纳、概括函数图像的特征; 3、掌握y?ax2型二次函数图像的特征;
4、经历从特殊到一般的认识过程,学会合情推理。 教学重点:
y?ax2型二次函数图像的描绘和图像特征的归纳
教学难点:
选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。 教学设计: 一、回顾知识
前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的?先(用描点法画出函数的图像,再结合图像研究性质。)
引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即
y?ax2入手。因此本节课要讨论二次函数y?ax2(a?0)的图像。
板书课题:二次函数y?ax2(a?0)图像 二、探索图像 1、
用描点法画出二次函数y?x2和y??x2图像
1-2 ?1 -1 212 1 4 41-4 -2 -1 4(1) 列表 x … … ?1 21 41 40 0 0 y?x2 1 212 41 1 -1 y??x2 … --1 411 212 4-12 42 4 -4 … … … 引导学生观察上表,思考一下问题: ①无论x取何值,对于y?x2来说,y的值
二次函数图像及其性质复习3
人教版 九年级下 复习用 总结用
人教版 九年级下 复习用 总结用
二次函数解析式1. 2. 3.
一般式:y=ax2+b x+c x+ 一般式: 顶点式: (x- 顶点式:y=a (x-h)2+k 交点式: (x- )(x- 交点式:y=a (x-x1)(x-x2)
人教版 九年级下 复习用 总结用
二次函数y=ax bx+ 二次函数y=ax2+bx+c(a≠0)图象 a≠0)图 性质a>0,抛物线开口向上, a>0,抛物线开口向上, a<0,抛物线开口向下; a<0,抛物线开口向下; b 对称轴为x= 对称轴为x= 2a
b 4ac b 2 顶点坐标为 ( , ) 2a 4a与y轴的交点坐标为(0,c) 轴的交点坐标为(0,
人教版 九年级下 复习用 总结用
c b± b2 4a ,0) 图象与x △ >0 图象与x轴交于两点( 2a b 图象与x △ =0 图象与x轴交于一点 ( ,) 0 2a
△<0
图象与x 图象与x轴无交点
当a>0时,函数在x= a>0时 函数在x=4a b2 c y= 4a
b 处,取得最小值 2a
b a<0时 函数在x= 当a
6.2.1二次函数的图像与性质
6.2.1二次函数的图像与性质⑴
【学习目标】
1.会用描点法画二次函数y?ax2的图像,掌握它的性质. 2.渗透数形结合思想.
【课前预习】
1.一次函数的图像是一条 ,反比例函数的图像叫做 线. 2.一次函数y?x?2经过点(0, )、 ( ,0)、(2, )、( ,-2). 在下列平面直角坐标系中画出它的图像:
4.当k= 时,函数y?(k?1)xk2y4321-4-3-2-1O-1-2-31234x3.形如 ( )的函数叫做二次函数.
?1?1为二次函数.
5.某超市1月份的营业额为100万元,2、3月份营业额的月平均增长率为x,求第一季度 营业额y(万元)与x的函数关系式是 .
【教学过程】
一、 自主探索:
1.画二次函数y?x2的图像: ⑴列表: x y?x2 … … -3 -2 -1 0 1 2 3 … … ⑵在下列平面直角坐标系中描出表中各点,并把这些
6.2.1二次函数的图像与性质
6.2.1二次函数的图像与性质⑴
【学习目标】
1.会用描点法画二次函数y?ax2的图像,掌握它的性质. 2.渗透数形结合思想.
【课前预习】
1.一次函数的图像是一条 ,反比例函数的图像叫做 线. 2.一次函数y?x?2经过点(0, )、 ( ,0)、(2, )、( ,-2). 在下列平面直角坐标系中画出它的图像:
4.当k= 时,函数y?(k?1)xk2y4321-4-3-2-1O-1-2-31234x3.形如 ( )的函数叫做二次函数.
?1?1为二次函数.
5.某超市1月份的营业额为100万元,2、3月份营业额的月平均增长率为x,求第一季度 营业额y(万元)与x的函数关系式是 .
【教学过程】
一、 自主探索:
1.画二次函数y?x2的图像: ⑴列表: x y?x2 … … -3 -2 -1 0 1 2 3 … … ⑵在下列平面直角坐标系中描出表中各点,并把这些
5.4 二次函数的图像和性质
5、4二次函数y=ax图象和性质
学习目标:
1.经历探索二次函数y=ax2的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验.
2.会作出y=ax2的图象,并能比较它们与y=x2的异同,理解a对二次函数图象的影响.
3.能说出y=ax图象的开口方向、对称轴和顶点坐标.
4.体会二次函数是研究某些实际问题的数学模型. 学习重点:
理解和掌握二次函数y=ax2的图象和性质 学习难点:
由函数图象概括出y=ax2的性质. 预习效果反馈
1.二次函数的一般形式:y=ax2+bx+c(a≠0),当 时,为y=ax2
+c的形式;当 时,即为y=ax2的形式. 2.二次函数y=ax2图象的对称轴为 ,顶点坐标为 . 3.二次函数y=2x2,与y=-2x2的图象形状相同,对称轴都是 轴,顶点都是 ,只是 不同,它们的图象关于 对称. 4.二次函数y=ax2中,a不仅可以决定开口方向,也决定 . 学习过程:
一、动手操作、自主探究 1、阅读P26页“实验与探究”,并完成课本上的问题
2、总结并完成P27页“交流与发现”中的四个问题,完成课本中的填
二次函数图像问题及答案(难题)
二次函数图像性质
1、二次函数y?ax?bx?c的图像如图所示,OA=OC,则下列结论: ①abc<0;②4ac?b2;③ac?b??1; ④2a?b?0;⑤OA?OB??y2c; aA-2⑥4a?2b?c?0。其中正确的有( ) A、2个 B、3个 C、4个 D、5个
2、抛物线y=ax2+bx+c的图象如图,OA=OC,则( ) (A) ac+1=b; (B) ab+1=c; (C)bc+1=a; (D)以上都不是
O1CBx第1题图 y C A O x 3,已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,给出以下结论:① a+b+c<0;② a-b+c<0;③ b+2a<0;④ abc>0 .其中所有正确结论的序号是( )
A. ③④ B. ②③ C. ①④ D. ①②③
y
O -11x
图2
4.如图是二次函数y=ax2+bx+c的图象的一部分;图象过点A(-3,0),对称轴为x=-1,
给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确的是________________.(填序号)
5.y=a
二次函数图像—符号确定-精解
二次函数图像—符号确定
1、二次函数f(x)=ax2+bx+c,图象如图( )
又由图可知,当X=-1时,对应的点在第三象限,将X=-1代入y=ax2+bx+c,得a-b+c<0
∴将a-b+c<0与a+b+c=2相减,得 -2b<-2 b>1
∴④是错的。
2、二次函数y=ax2+bx+c的图象的一部分如图,则a的取值范围是( )
3、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1.则以下结论错误的
是( )
4、如图,已知二次函数y=ax2+bx+c(a≠0)的图象,则下列结论正确序号是 (只填序号).①abc>0;②c=-3a;③b2+ac>0.
5、如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③
2a-b<0;④b2+8a>4ac中正确的是(填写序号)
6、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,与y轴相交一点C,与x轴负半轴相交一点A,且OA=OC,
有下列5个结论:
其中正确的结论有