高中数学解题方法技巧大全
“高中数学解题方法技巧大全”相关的资料有哪些?“高中数学解题方法技巧大全”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学解题方法技巧大全”相关范文大全或资料大全,欢迎大家分享。
高中数学解题思想方法大全
目录
前言 (2)
第一章高中数学常用的数学思想 (3)
一、数形结合思想 (3)
二、分类讨论思想 (9)
三、函数与方程思想 (15)
四、转化(化归)思想 (22)
第二章高中数学解题基本方法 (23)
一、配方法 (23)
二、换元法 (27)
三、待定系数法 (34)
四、定义法 (39)
五、数学归纳法 (43)
六、参数法 (48)
七、反证法 (52)
八、消去法 (54)
九、分析与综合法 (55)
十、特殊与一般法 (56)
十一、类比与归纳法 (57)
十二、观察与实验法 (58)
第三章高考热点问题和解题策略 (59)
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分析…………………………
二、两套高考模拟试卷…………………………
三、参考答案……………………………………
实用文档
.
前言
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一
个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题
高中数学解题思想方法大全
目录
前言 (2)
第一章高中数学常用的数学思想 (3)
一、数形结合思想 (3)
二、分类讨论思想 (9)
三、函数与方程思想 (15)
四、转化(化归)思想 (22)
第二章高中数学解题基本方法 (23)
一、配方法 (23)
二、换元法 (27)
三、待定系数法 (34)
四、定义法 (39)
五、数学归纳法 (43)
六、参数法 (48)
七、反证法 (52)
八、消去法 (54)
九、分析与综合法 (55)
十、特殊与一般法 (56)
十一、类比与归纳法 (57)
十二、观察与实验法 (58)
第三章高考热点问题和解题策略 (59)
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分析…………………………
二、两套高考模拟试卷…………………………
三、参考答案……………………………………
实用文档
.
前言
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一
个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题
高中数学解题方法及解析大全
高中数学解题方法大全
最全面的高考复习资料
目录
前言 (2)
第一章高中数学解题基本方法 (3)
一、配方法 (3)
二、换元法 (7)
三、待定系数法 (14)
四、定义法 (19)
五、数学归纳法 (23)
六、参数法 (28)
七、反证法 (32)
八、消去法………………………………………
九、分析与综合法………………………………
十、特殊与一般法………………………………
十一、类比与归纳法…………………………
十二、观察与实验法…………………………
第二章高中数学常用的数学思想 (35)
一、数形结合思想 (35)
二、分类讨论思想 (41)
三、函数与方程思想 (47)
四、转化(化归)思想 (54)
第三章高考热点问题和解题策略 (59)
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分析…………………………
2
二、两套高考模拟试卷…………………………
三、参考答案……………………………………
前言
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及
高中数学解题小技巧
高中数学解题小技巧
一、代入法
若动点P(x,y)依赖于另一动点Q(x0,y0)而运动,而Q点的轨迹方程已知(也可能易于求得)且可建立关系式x0?f(x),y0?g(x),于是将这个Q点的坐标表达式代入已知(或求得)曲线的方程,化简后即得P点的轨迹方程,这种方法称为代入法,又称转移法或相关点法。
【例1】(2009年高考广东卷)已知曲线C:y?x2与直线l:
x?y?2?0交于两点A(xA,yA)和B(xB,yB),且xA?xB,记曲线
C在
点A和点B之间那一段L与线段AB所围成的平面区域(含边界)为D.设点P(s,t)是L上的任一点,且点P与点A和点B均不重合.若点Q是线段AB的中点,试求线段PQ的中点M的轨迹方程; 【巧解】联立y?x2与y?x?2得xA??1,xB?2,则AB中点Q(15,), 2215?s?t22设线段PQ 的中点M坐标为(x,y),则x?, ,y?2215即s?2x?,t?2y?,又点P在曲线C上,
225111∴2y??(2x?)2化简可得y?x2?x?,又点P是L上的任一
228点,
115?2,即??x?, 2441115∴中点M的轨迹方程为y?x2?x?(??x?).
844且不与点A和点B重合,则?1?2x?【例
高中数学解题基本方法
good
高中数学解题基本方法
换元法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。
三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+ x的值域时,易发现x∈[0,1],设x=sin2α ,α∈[
高中数学解题思想方法技巧大总结
选校网d65e74c58bd63186bcebbc99高考频道专业大全历年分数线上万张大学图片大学视频院校库
目录
前言 (2)
第一章高中数学解题基本方法 (3)
一、配方法 (3)
二、换元法 (7)
三、待定系数法 (14)
四、定义法 (19)
五、数学归纳法 (23)
六、参数法 (28)
七、反证法 (32)
八、消去法………………………………………
九、分析与综合法………………………………
十、特殊与一般法………………………………
十一、类比与归纳法…………………………
十二、观察与实验法…………………………
第二章高中数学常用的数学思想 (35)
一、数形结合思想 (35)
二、分类讨论思想 (41)
三、函数与方程思想 (47)
四、转化(化归)思想 (54)
第三章高考热点问题和解题策略 (59)
选校网d65e74c58bd63186bcebbc99专业大全历年分数线上万张大学图片大学视频院校库
选校网d65e74c58bd63186bcebbc99高考频道专业大全历年分数线上万张大学图片大学视频院校库
一、应用问题 (59)
二、探索性问题 (65)
三、选择题解答策略 (71)
四、填空题解答策略 (77)
附录………………………………………………………
一、高考数学试卷分
高中数学解题思想和解题方法
目 录
前言 ????????????????????? 2 第一章
高中数学解题基本方法 ????????? 3 一、 配方法 ??????????????? 3 二、 换元法 ??????????????? 7 三、 待定系数法 ????????????? 14 四、 定义法 ??????????????? 19 五、 数学归纳法 ????????????? 23 六、 参数法 ??????????????? 28 七、 反证法 ??????????????? 32 八、 消去法 ??????????????? 九、 分析与综合法 ???????????? 十、 特殊与一般法 ???????????? 十一、 十二、 第二章
类比与归纳法 ?????????? 观察与实验法 ??????????
高中数学常用的数学思想 ???????? 35
一、 数形结合思想 ???????????? 35 二、 分类讨论思想 ???????????? 41 三、 函数与方程思想 ??????????? 47 四、 转化(化归)思想 ?????????? 54 第三章
高考热点问题和解题策略 ???????? 59 一、 应用
高中数学函数解题技巧
专题1 函数 (理科)
一、考点回顾
1.理解函数的概念,了解映射的概念.
2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法.
3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析
考点一:函数的性质与图象
函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.
复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法.
3.培养学生用运动变
高中数学解题基本方法——配方法
掌握一种解题的基本方法。
高中数学解题基本方法——配方法
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)=a+2ab+b,将这个公式灵活运用,可得到各种基本配方形式,如:
a+b=(a+b)-2ab=(a-b)+2ab; 2222222
b22a+ab+b=(a+b)-ab=(a-b)+3ab=(a+)+(b); 222222
a+b+c+ab+bc+ca=
22222221222[(a+b)+(b+c)+(c+a)] 22a+b+c=(a+b+c)-2(ab+bc+ca)=(a+b-c)-2(ab-bc-ca)=
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα);
x+2211
高中数学经典解题技巧和方法:平面向量
世纪金榜 圆您梦想 www.jb1000.com
高中数学经典解题技巧:平面向量
【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无 论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网 数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望 能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了, 下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题, 同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:
1. 平面向量的实际背景及基本概念 (1) 了解向量的实际背景。
(2) 理解平面向量的概念,理解两个向量相等的含义。 (3) 理解向量的几何意义。 2. 向量的线性运算
(1) 掌握向量加法、减法的运算,并理解其几何意义。
(2) 掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3) 了解向量线性运算的性质及其几何意义。 3. 平面向量的基本定理及坐