分离变量法解微分方程

“分离变量法解微分方程”相关的资料有哪些?“分离变量法解微分方程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“分离变量法解微分方程”相关范文大全或资料大全,欢迎大家分享。

D7_2可分离变量微分方程

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第二节 可分离变量微分方程可分离变量方程

第七章

dy f1 ( x) f 2 ( y ) dx M1 ( x)M 2 ( y) d x N1 ( x) N 2 ( y) d y 0转化

解分离变量方程 g ( y) d y f ( x) d x目录 上页 下页 返回 结束

分离变量方程的解法:

g ( y ) d y f ( x) d xg ( ( x)) ( x) d x f ( x) d x两边积分, 得

设 y= (x) 是方程①的解, 则有恒等式

f ( x) d x

设左右两端的原函数分别为 G(y), F(x), 则有 ②

当G(y)与F(x) 可微且 G (y) g(y) 0 时, 说明由②确定的隐函数 y= (x) 是①的解. 同样, 当 F (x) = f (x)≠0 时, 由②确定的隐函数 x= (y) 也是①的解.

称②为方程①的隐式通解, 或通积分.目录 上页 下页 返回 结束

例1. 求微分方程

的通解.

dy 2 3 x d x 说明: 在求解过程中 解: 分离变量得 y 每一步不一定是同解 变形, 因此可能增、 两边积分 减解. 或 3 ln y x C1 得即

令C

第二节可分离变量的微分方程

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第二节 可分离变量的微分方程

教学目的:熟练掌握可分离变量的微分方程的解法 教学重点:可分离变量的微分方程的解法 教学难点:可分离变量的微分方程的解法 教学内容:

本节开始,我们讨论一阶微分方程

y??f(x,y) (1)

的一些解法.

一阶微分方程有时也写成如下的对称形式:

P(x,y)dx?Q(x,y)dy?0 (2)

在方程(2)中,变量x与y对称,它既可以看作是以为x自变量、y为未知函数的方程

dyP(x,y)?? (Q(x,y)?0), dxQ(x,y)也可看作是以x为自变量、y为未知函数的方程

dxQ(x,y)?? (P(x,y)?0), dyP(x,y)

在第一节的例1中,我们遇到一阶微分方程

dy?2x, dx或 dy?2xdx. 把上式两端积分就得到这个方程的通解:

y?x2?C。

但是并不是所有的一阶微分方程都能这样求解。例如,对于一阶微分方程

dy?2xy2 (3) dx就不能像上面那样

微分方程数值解报告

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

2011-12-22

山东大学数学学院08级基地班 信息与计算科学专业 乔珂欣 学号 200800090114

微分方程数值解报告

目 录

一维变系数二点边值问题的中心差分数值解法 ....................................................... 3

1.中心差分格式的建立 ....................................................................................................................... 3 2.算例 ................................................................................................................................................... 5

二维常系数椭圆问题五点中心差分 ....................................................................

微分方程数值解报告

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

2011-12-22

山东大学数学学院08级基地班 信息与计算科学专业 乔珂欣 学号 200800090114

微分方程数值解报告

目 录

一维变系数二点边值问题的中心差分数值解法 ....................................................... 3

1.中心差分格式的建立 ....................................................................................................................... 3 2.算例 ................................................................................................................................................... 5

二维常系数椭圆问题五点中心差分 ....................................................................

偏微分方程数值解

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

数学与计算科学学院

实 验 报 告

实验项目名称 用Eular方法求解一阶常微分方程数值解 所属课程名称 偏微分方程数值解 实 验 类 型 验证性 实 验 日 期 2015-3-26

班 级 信计12-2班 学 号 201253100215 姓 名 张洪清 成 绩

一、实验概述: 【实验目的】 学会使用显性Eular方法和隐形Eular方法 应用显性Eular方法和隐形Eular方法求解一般一阶常微分方程的近似数值解。 学会用MATLAB解决数学问题。 【实验原理】 1、Eular方法: 一阶线性微分方程初值问题 ?y'?f(x,y),a?x?b??y(

常微分方程数值解 - 图文

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

常微分方程数值解

一只小船度过宽为d的河流,目标是起点A正对着的另一岸B点,已知河水流速v1 与船在静水中的中的速度v2 之比为k

(1)建立描述小船航线的数学模型,求其解析解;

(2)设d = 100 m,v1 = 1 m/s,v2 = 2 m/s,用数值解法求渡河所需时间,任何时刻小船的位置及航行曲线,作图,并与解析解比较; (3)若流速v1 =0 ,0.5 ,1.5 ,2 m/s结果将如何;

解题过程

(1) 以B为原点,沿河岸向右为x轴正向,垂直河岸向下为y轴正向,建立 坐标系。设在t时刻,船在x方向上的位移是x(t),在Y方向上的位移是y(t)。

在t时刻,船在x方向上的速度是x'(t),在y方向上的速度是y'(t),将船的速度v和水度v1在x,y轴方向上分解,可得:

vx?v1?v2sin?及vy??v2cos?

又tan??x y故sin??xx?y22cos???v2yy?x22yx?y

22

则有vy?dy=dt以及vx? (2)

dx=v1?dtv2xy?x22

数值解:下面将用龙格-库塔方法对微分方程和微分方程组进行近似求解 function Xdot=fun(t,x,v1,v2) d=100;v1=1;v2=

试论常微分方程的奇解

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

试论常微分方程的奇解

摘要: 一阶微分方程拥有含有一个任意常数的通解,另外可能还有个别不含于通

解的特解,即奇解,利用P-判别法和C-判别法可以求出奇解,而这两种判别法是否适用于求每一个一阶微分方程的奇解?此文中举了几个例子来说明这个问题.并给出另外三种求奇解的方法.

关键词: 一阶微分方程,奇解,P-判别式,C-判别式,C-P消去法,拾遗法,自然法.

Discussing Singular Solution about First Order

Differential Equation

ZHU Yong-wang

(Class 1, Grade 2006, College of Mathematics and Information Science)

Advisor: Professor LI Jian-min

Abstract: First order differential equation has a general solution which contains an arbitrary constant, but sometimes it has special solution that is singular solution

高等 数学 解微分方程详细讲解

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

怎样解微分方程

常微分方程课件主讲:罗兆富统计与数学学院

机动

目录

上页

下页

返回

结束

怎样解微分方程

常微分方程课程简介

常微分方程是研究自然科学和社会科学中的事物、 物体和现象运动、演化和变化规律的最为基本的数 学理论和方法。物理、化学、生物、工程、航空航 天、医学、经济和金融领域中的许多原理和规律都 可以描述成适当的常微分方程,如牛顿运动定律、 万有引力定律、机械能守恒定律,能量守恒定律、 人口发展规律、生态种群竞争、疾病传染、遗

机动

目录

上页

下页

返回

结束

怎样解微分方程

传基因变异、股票的涨伏趋势、利率的 浮动、市场均衡价格的变化等,对这些 规律的描述、认识和分析就归结为对相 应的常微分方程描述的数学模型的研究.因此,常微分方程的理论和方法不仅广泛 应用于自然科学,而且越来越多的应用于社会 科学的各个领域。

机动

目录

上页

下页

返回

结束

怎样解微分方程

教材及参考资料教 材:常微分方程,东北师大数学系编,高教出版社。 参考书目: 1. 常微分方程,(第二版), 王高雄等编(中山大学), 高教 出版社。 2. 常微分方程讲义,王柔怀、伍卓群编,高教出版社。 3. 常微分方程教程,丁同仁(北京大学), ,高教出版社。 4. 常微分方程及其应用,周义仓等编,科学出版社。

偏微分方程数值解(试题)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

偏微分方程数值解试题

1、考虑一维的抛物型方程:

?u?2u??2, x?[0,?], 0?t?T?t?x u(x,t)x?0?u0, u(x,t)x???u?u(x,0)??(x)(1)导出时间离散是一阶向前Euler格式,空间离散是二阶精度的差分格式;

(2)讨论(1)中导出的格式的稳定性; (3)若时间离散为二阶精度的蛙跳格式,

?uun?1?un?1 ??tt?tn2?t空间离散是二阶精度的中心差分,问所导出的格式稳定吗?为什么?

2、考虑Poission方程

??2u(x,y)?1, (x,y)???u ?0, in AB and AD?nu(x,y)?0, in BC and CD其中Ω是图1中的梯形。

图1 梯形

使用差分方法来离散该方程。由于梯形的对称性,可以考虑梯形的一半,如图2,

图2 从物理空间到计算区域的几何变换

?,然后在??上使用差分为了求解本问题,采用如下方法:将Ω的一半投影到正方形区域??上用N?N个网格点,空间步长为方法来离散该方程。在计算区域???????1/N(?1) 。

?(带有坐标?,?)(1)引入一个映射T将原区域

试题库2(解微分方程)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

常微分方程试题库

二、计算题(每题6分)

1. 解方程:tanydx?cotxdy?0; 2. 解方程:3. 解方程:4. 解方程:

dy?2y?ex; dx;

dx?3x?e2t; dt5. 解方程:e?ydx?(2y?xe?y)dy?0;

y6. 解方程:dx?(y3?lnx)dy?0;

x7. 解方程:(2xy?3x2y2)dx?(x2?2x3y)dy?0;

8. 解方程:x????5x???8x??4x?0; 9. 解方程:x(7)?2x(5)?x(3)?0; 10. 解方程:x????x???2x?0; 11. 解方程:x??y??0,x??y??1;

dy?ylny; dxdy13. 解方程:?ex?y;

dx14. 解方程:(x2?1)y??2xy2?0;

dy15. 解方程:?y2cosx;

dx16. 解方程:(y2?xy2)dx?(x2?yx2)dy;

dy17. 解方程:?2xy?4x;

dxd?18.解方程:?3??2;

d?2dy19. 解方程:?xe2y?x;

dx20. 解方程:xy??2y?2x4;

12. 解方程:

选题说明:每份试卷选2道题为宜。

二、计算题参考答案与评分标准: