二次函数动点压轴题

“二次函数动点压轴题”相关的资料有哪些?“二次函数动点压轴题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数动点压轴题”相关范文大全或资料大全,欢迎大家分享。

二次函数动点问题(含答案)

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数的动态问题(动点)

1.如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形

MDNA的面积为S.若点A,点D同时以每秒1个单位

的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;

(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

[解] (1)点A(?40,),点B(?20,),点E(08,)关于原点的对称点分别为D(4,0),C(2,0),

F(0,?8).

设抛物线C2的解析式是

y?ax2?bx?c(a?0),

?16a?4b?c?0,?则?4a?2b?c?0, ?c??8.?,?a??1?解得?b?6,

?c??8.?所以所求抛物线的解析式是y??x?6x?8.

二次函数应用题及压轴题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数应用题及压轴题

1.(2014?眉山)“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱. (1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元? (2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高? 2.(2014?台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.

(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;

(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本). ①求w关于x的函数关系式;

②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?

(3

中考二次函数压轴题及答案

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

中考二次函数压轴题及答案

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

二次函数与圆综合动点问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数与圆综合动 点问题 1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标;

(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;

y

y=x+b

D M 4 C

3 2 1

A B

x ?1 O 1

2.如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA?没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm. (1)求x、y所满足的关系式,并写出x的取值范围. (2)当△MOP为等腰三角形时,求相应的x的值. B

M Q

O P A

3.如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积;

(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CP

中考二次函数压轴题及答案

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

高考函数压轴题二次求导等

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

二次求导

【理·2010全国卷一第20题】已知函数f(x)?(x?1)lnx?x?1. (Ⅰ)若xf'(x)?x?ax?1,求a的取值范围; (Ⅱ)证明:(x?1)f(x)?0

先看第一问,首先由f(x)?(x?1)lnx?x?1可知函数f?x?的定义域为?0,???,易得

211f??x??lnx??x?1??1?lnx?

xx则由xf'(x)?x?ax?1可知x?lnx?2??1?2??x?ax?1,化简得 x?xlnx?x2?ax,这时要观察一下这个不等式,显然每一项都有因子x,而x又大于零,所以两边同

1可得lnx?x?a,所以有a?lnx?x,在对g?x??lnx?x求导有 x1g??x???1,即当0<x<1时,g??x?>0,g?x?在区间?0,1?上为增函数;当x?1时,g?x??0;

x当1<x时,g??x?<0,g?x?在区间?1,???上为减函数。

所以g?x?在x?1时有最大值,即g?x??lnx?x?g?1???1。又因为a?lnx?x,所以a??1。 应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。

要证(x?1)f(x)?0,只须证当0<x?1时,f?x??0;当1<x时,f?x?>0即可。

11,但用

二次函数压轴题分类精选 - 相似

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

1.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D. (1)求m、n的值及该抛物线的解析式;

(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;

(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.

【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,确定出A与B坐标,代入二次函数解析式求出b与c的值即可;

(2)由等腰直角△APM和等腰直角△DPN,得到∠MPN为直角,由两直角边乘积的一半表示出三角形MPN面积,利用二次函数性质确定出三角形面积最大时P的坐标即可;

(3)存在,分两种情况,根据相似得比例,求出AQ的长,利用两点间的距离公式求出Q坐标即可.

【解答】解:(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3, ∴A(1,0),B(4,3), ∵y=﹣x2+bx+c

2012年中考数学二次函数压轴题总汇2及动点问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

由莲山课件提供http://www.5ykj.com/ 资源全部免费

2012年全国中考数学(续61套)压轴题分类解析汇编

专题01:动点问题

25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以5cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作

PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示). (2)当点N落在AB边上时,求t的值.

(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上

二次函数压轴题最短路径问题

标签:文库时间:2025-02-06
【bwwdw.com - 博文网】

最短路径问题——和最小

【方法说明】

“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.

l

B

A

l

【方法归纳】

①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.

l

A

l

②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.

l

B

A

③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点

C ,

D 即为所求.

O

B

O

B

④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DE +E