数值实验题 若椭圆方程为

“数值实验题 若椭圆方程为”相关的资料有哪些?“数值实验题 若椭圆方程为”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数值实验题 若椭圆方程为”相关范文大全或资料大全,欢迎大家分享。

数值实验题

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

大学的 数值实验题1

实验1.1 病态问题

实验目的:

算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题是指问题本身对扰动敏感,反之属于好问题。本实验通过对一个高次多项式方程的求解,初步认识病态问题。

实验内容:

考虑一个高次的代数多项式

p(x)?(x?1)(x?2)?(x?20)??(x?k) (E.1.1)

k?120显然该多项式的全部根为1,2,?,20,共计20个,且每个根都是单重的(也称为简单的)。现考虑该多项式的一个扰动 p(x)??x19?0, (E.1.2)

其中,ε是一个非常小的数。这相当于是对方程(E.1.1)中x19的系数作一个小的扰动。比较方程(E.1.1)和方程(E.1.2)根的差别,从而分析方程(E.1.1)的解对扰动的敏感性。 实验步骤与结果分析:

(一) 实验源程序

function t_charpt1_1

% 数值实验1.1病态问题

% 输入:[0 20]之间的扰动项及小的扰动常数 % 输出:加扰动后得到的全部根 clc

result=inputdlg({'请输入扰动项:在[0 20]之间的整数:'},'charpt 1_

椭圆的标准方程

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

中学数学 高中二年级上学期第6课

椭圆-1主讲人

官琪

北京市第九中学

如何研究椭圆

如何研究椭圆(1)由椭圆曲线求它的方程

如何研究椭圆(1)由椭圆曲线求它的方程 (2)利用方程研究椭圆的性质

实验:绘制椭圆

实验:绘制椭圆将一条没有弹性的细绳的两端 拉开一段距离,分别固定在图板上 不同的两点 处,并用笔尖拉 紧绳子,再移动笔尖一周,这时笔 尖画出的轨迹是什么图形呢?

F1

F2

实验思考

实验思考(1)如果调整细绳两端的相对位 置,细绳的长度不变,猜想轨迹会 发生怎样的变化?

实验思考(2)如果调整细绳的长度,细绳 两端的相对位置不变,猜想轨迹会 发生怎样的变化?

实验思考(3)细绳两端的距离与绳长等于 或大于绳长,画出的图形还是椭 圆吗?还能画出图形吗?

实验09 数值微积分与方程数值解(第6章)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

《数学软件》课内实验

王平

实验09 数值微积分与方程数值求解

(第6章 MATLAB数值计算)

一、实验目的

1. 掌握求数值导数和数值积分的方法。 2. 掌握代数方程数值求解的方法。 3. 掌握常微分方程数值求解的方法。 二、实验内容

1. 求函数在指定点的数值导数

xf(x)?1程序及运行结果: x2x36x2x3x2,x?1,2,3

022. 用数值方法求定积分

(1) I1??2?0cost2?4sin(2t)2?1dt的近似值。

程序及运行结果:

1

(2) I2? 2??0ln(1?x)dx

1?x2程序及运行结果:

3. 分别用3种不同的数值方法解线性方程组

?6x?5y?2z?5u??4?9x?y?4z?u?13? ??3x?4y?2z?2u?1??3x?9y?2u?11程序及运行结果: 4. 求非齐次线性方程组的通解

?2x1?7x2?3x3?x4?6??3x1?5x2?2x3?2x4?4 ?9x?4x?x?7x?2234?1程序及运行结果(提示:要用教材中的函数程序line_solution): 5. 求代数方程的数值解

(1) 3x+sinx-ex=0在x0=1.5附近的根。

程序及运行结果

椭圆及其标准方程

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

第一节 椭圆

1.椭圆的定义

(1) 第一定义:|PF1|?|PF2|?2a(2a?|F1F2|) (F1,F2为焦点,|F1F2|?2c为焦距) 注:①当2a=|F1F2|时,P点的轨迹是 .

②当2a<|F1F2|时,P点的轨迹不存在.

(2)第二定义:

|PF|d?e,(0?e?1)

注:第二定义中焦点与准线应对应

2.椭圆的标准方程(中心在原点,对称轴为坐标原点)(1) 焦点在x轴上,中心在原点的椭圆标准方程是:(2) 焦点在y轴上,中心在原点的椭圆标准方程是

yaxa2222?xbyb2222?1,其中( > >0,且a2? )

??1,其中a,b满足: .

说明:(1)焦点在x2,y2分母大的对应的坐标轴上; (2)a2?b2?c2及a,b,c的几何意义 (3)标准方程的统一形式:mx2?ny2?1(m?0,n?0,m?n)

适用于焦点位置未知的情形

?x?acos? (4)参数方程:??y?bsin?3.椭圆的几何性质(对(1) (2) (3) (4)

xa2

椭圆及其标准方程

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

高中数学· 选修1-1· 人教A版

2.1.1

椭圆及其标准方程

第二章

圆锥曲线与方程2.1 椭 圆

2.1.1 椭圆及其标准方程

预习导学

课堂讲义

当堂检测

预习导学

2.1.1

椭圆及其标准方程

[学习目标] 1 .了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过

程,椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.

预习导学

课堂讲义

当堂检测

预习导学

2.1.1

椭圆及其标准方程

[知识链接] 命题甲:动点P到两定点A、B的距离之和|PA|+|PB|=2a (a>0且a 为常数);命题乙:点 P的轨迹是椭圆,且A、B是椭圆的焦点,

则命题甲是命题乙的(A.充分不必要条件 C.充要条件 答案 B

)B.必要不充分条件 D.既不充分也不必要条件

预习导学

课堂讲义

当堂检测

预习导学

2.1.1

椭圆及其标准方程

解析 若P点的轨迹是椭圆,则一定有|PA|+|PB|=2a (a>0,且a为常数), 所以命题甲是命题乙的必要条件. 若|PA| +|PB|=2a (a>0,且 a为常数 ) ,不能推出 P点的轨迹是椭 圆.

这是因为:仅当2a>|AB|时,P点的轨迹是椭圆;而当2a=|AB|时,P点的轨迹是线段AB; 当2a<|AB|

实验09 数值微积分与方程数值解(第6章)

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

《数学软件》课内实验

王平

实验09 数值微积分与方程数值求解

(第6章 MATLAB数值计算)

一、实验目的

1. 掌握求数值导数和数值积分的方法。 2. 掌握代数方程数值求解的方法。 3. 掌握常微分方程数值求解的方法。 二、实验内容

1. 求函数在指定点的数值导数

xf(x)?1程序及运行结果: x2x36x2x3x2,x?1,2,3

022. 用数值方法求定积分

(1) I1??2?0cost2?4sin(2t)2?1dt的近似值。

程序及运行结果:

1

(2) I2? 2??0ln(1?x)dx

1?x2程序及运行结果:

3. 分别用3种不同的数值方法解线性方程组

?6x?5y?2z?5u??4?9x?y?4z?u?13? ??3x?4y?2z?2u?1??3x?9y?2u?11程序及运行结果: 4. 求非齐次线性方程组的通解

?2x1?7x2?3x3?x4?6??3x1?5x2?2x3?2x4?4 ?9x?4x?x?7x?2234?1程序及运行结果(提示:要用教材中的函数程序line_solution): 5. 求代数方程的数值解

(1) 3x+sinx-ex=0在x0=1.5附近的根。

程序及运行结果

椭圆及其标准方程说课稿

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

椭圆及其标准方程说课稿

崔晓宁

各位领导、各位老师:

晚上好!很荣幸能参加今晚的说课活动.我今晚说课的题目是《椭圆及其标准方程》。我将按照1、教材分析、2、教学目标分析、3、学情分析、4、教法学法分析、5、教学过程分析、6、教学反思、这6个环节对本节课进行说明。

首先是教材分析:

教材的地位和作用:椭圆定义及其标准方程是高中数学第八章《圆锥曲线方程》的内容,在这之前学生已经学习了坐标平面上直线和圆的方程,以及求简单曲线方程和利用曲线方程研究曲线几何性质的初步知识,在此基础上,将研究曲线的方法拓展到椭圆,为以后学习椭圆的几何性质及其它圆锥曲线做好准备。因此本节内容起到承上启下的作用,是本章的重点。另外,椭圆定义与方程的研究,使曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想,而这种思想,将贯穿整个高中阶段的数学学习。而且椭圆的知识在日常生活和科学技术方面都有着广泛的应用.

教学目标分析:

知识目标:理解椭圆的定义,掌握椭圆标准方程及推导

技能目标:能根据条件确定椭圆标准方程,并掌握用待定系数法求椭圆标准方程。

情感目标:鼓励学生积极、主动的参与教学的整个过程,激发其求知的欲望;培养学生勇于探索 、敢于创新的精神。体验数与形对立统一

MATLAB实验报告_常微分方程数值解

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

manlab软件应用试验题目

专业 序号 姓名 日期

实验3 常微分方程数值解

【实验目的】

1.掌握用MATLAB求微分方程初值问题数值解的方法;

2.通过实例学习微分方程模型解决简化的实际问题;

3.了解欧拉方法和龙格库塔方法的基本思想。

【实验内容】

用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值解,画出解的图形,对结果进行分析比较

(1) y' y 2x,

y(0) 1

2(0 x 1),精确解y 3e 2x 2;2x

(2) y' x y, y(0) 0或y(0) 1 (0 x 10).

【解】:手工分析怎样求解

【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数形式?

【程序如下】:

function f=f(x,y)

f=y+2*x;

clc;clear;

a=0;b=1; %求解区间

[x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值解;

%% 以下利用Euler方法求解

y(1)=1;N=100;h=(b-a)/N;

x=a:h:b;

for i=1:N

y(i+1)=y(i)+h*f(x(i),y(i));

end

figure(1)

plot(x1,y_r,'r*',x

MATLAB实验报告_常微分方程数值解

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

manlab软件应用试验题目

专业 序号 姓名 日期

实验3 常微分方程数值解

【实验目的】

1.掌握用MATLAB求微分方程初值问题数值解的方法;

2.通过实例学习微分方程模型解决简化的实际问题;

3.了解欧拉方法和龙格库塔方法的基本思想。

【实验内容】

用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值解,画出解的图形,对结果进行分析比较

(1) y' y 2x,

y(0) 1

2(0 x 1),精确解y 3e 2x 2;2x

(2) y' x y, y(0) 0或y(0) 1 (0 x 10).

【解】:手工分析怎样求解

【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数形式?

【程序如下】:

function f=f(x,y)

f=y+2*x;

clc;clear;

a=0;b=1; %求解区间

[x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值解;

%% 以下利用Euler方法求解

y(1)=1;N=100;h=(b-a)/N;

x=a:h:b;

for i=1:N

y(i+1)=y(i)+h*f(x(i),y(i));

end

figure(1)

plot(x1,y_r,'r*',x

非线性方程的数值计算方法实验

标签:文库时间:2025-01-16
【bwwdw.com - 博文网】

《数值方法》实验报告

1

非线性方程的数值计算方法实验

【摘要】在利用数学工具研究社会现象和自然现象,或解决工程技术等问题

?0的求解问题,时,很多问题都可以归结为非线性方程f(x)无论在理论研究方

面还是在实际应用中,求解非线性方程都占了非常重要的地位。综合当前各类非线性方程的数值解法,通过比较分析,二分法,迭代法,牛顿—拉夫森方法,迭代法的收敛阶和加速收敛方法,以上的算法应用对某个具体实际问题选择相应的数值解法。

关 键 词 非线性方程;二分法;迭代法;牛顿-拉夫森法;割线法等。

一、实验目的

通过本实验的学习,应掌握非线性方程的数值解法的基本思想和原理,深刻认识现实中非线性方程数值的意义;明确代数精度的概念;掌握二分法、不动点迭代法、牛顿迭代法、割线法等常用的解非线性方程的方法;培养编程与上机调试能力。

二、实验原理

二分法:单变量函数方程: f(x)=0

其中,f(x)在闭区间[a,b]上连续、单调,且f(a)*f(b)<0,则有函数的介值定理可知,方程f(x)=0在(a,b)区间内有且只有一个解x*,二分法是通过函数在区间端点的符号来确定x*所在区域,将有根区间缩小到充分小,从而可以求出满足给定精度的根x*的近似值。 下面研究二分法的几何意义:

设a1=1, b1=b, 区间?a1,b1?,中点x1=

a1?b1及f?x1?,若f?x1?=0,则x*=x1,2若 f(a1)*f(x1)<0,令a2=a1,b2=x1,则根x*? [a2,b2]中,这样就得到长度缩小一半的有根区间[a2,b2],若 f(b1)*f(x1)<0,令a2=x1,b2=b1,则根x*? [a2,b2]中,这样就得到长度缩小一半的有根区间[a2,b2],即f(a2)f(b2)<0,此时b2-a2=

b1?a1,对有根区间[a