用相似三角形解决问题(1)
“用相似三角形解决问题(1)”相关的资料有哪些?“用相似三角形解决问题(1)”相关的范文有哪些?怎么写?下面是小编为您精心整理的“用相似三角形解决问题(1)”相关范文大全或资料大全,欢迎大家分享。
6.7用相似三角形解决问题1
苏科版 2015
6.7相似三角形的应用(1)
班级_________姓名_________
一、创设情境
1问题:在阳光下行走时,你会看到路上有。
结论:光线在直线传播过程中,遇到不透明的物体,在这个物体后面光线不能到达的区域便产生 。
举例:
2、我们把太阳光看成平行光线,在平行光线的照射下,物体所产生的影称为。
二、探索研究:
在同一时刻,甲杆在阳光下的影长如图:
(1
(2)利用(1)中的条件,你能得到在平行光线的照射下,不同物体的物高与其影长的关系是什么? 。
说说你的理由。
归纳:在太阳光下,在同一时刻,物体的高度与物体的影长存在何种关系呢?
三、例题讲解:
例1.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影; (2)在测量AB的投影时,同时测量出DE在阳光 下的投影长为6m,请你计算DE的长.
例2、如图,甲楼AB高18米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1: 2,已
6.7用相似三角形解决问题1
苏科版 2015
6.7相似三角形的应用(1)
班级_________姓名_________
一、创设情境
1问题:在阳光下行走时,你会看到路上有。
结论:光线在直线传播过程中,遇到不透明的物体,在这个物体后面光线不能到达的区域便产生 。
举例:
2、我们把太阳光看成平行光线,在平行光线的照射下,物体所产生的影称为。
二、探索研究:
在同一时刻,甲杆在阳光下的影长如图:
(1
(2)利用(1)中的条件,你能得到在平行光线的照射下,不同物体的物高与其影长的关系是什么? 。
说说你的理由。
归纳:在太阳光下,在同一时刻,物体的高度与物体的影长存在何种关系呢?
三、例题讲解:
例1.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影; (2)在测量AB的投影时,同时测量出DE在阳光 下的投影长为6m,请你计算DE的长.
例2、如图,甲楼AB高18米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1: 2,已
相似三角形判定1
24.3.2相似三角形的判定
成比例 相等 对应边——————的两个三 对应角_______, D 角形, 叫做相似三角形 . AC E 6 ∠A=∠D, ∠B=∠E, ∠C=∠F BAB AC BC DE DF EF
F△ ABC∽ △DEF
6
成比例 相似三角形的———————, 各对应边——————。AB BC AC 相似比: DE EF DF
对应角相等
=k k 1 两三角形相似k=1 两三角形全等
判定两个三角形相似时,是不是对所有的对 应角和对应边都要一一验证呢?(类比≌△) 不需要
探究60° 45°
如果一个三角形的三个角分别与另一个三角形的 三个角对应相等,那么它们相似吗?
任意画两个三角形,使三对角分 别对应相等,再量一量对应边, 看看是否成比例. D82° 5 8 51° F
A82° 6 6
4 51° C E
10 47° 12
B 47°
你发现了什么,这两个三角形相似吗?
如果两个三角形三组对应角分别相等, 那么这两个三角形相似。
D82°
A82°
B 47°
C 6 51° E
47°
相似三角形存在性问题
- -
- 总结 因动点产生的相似三角形问题
例1 2015年市宝山区嘉定区中考模拟第24题
如图1,在平面直角坐标系中,双曲线(k ≠0)与直线y =x +2都经过点A (2, m ).
(1)求k 与m 的值;
(2)此双曲线又经过点B (n , 2),过点B 的直线BC 与直线y =x +2平行交y 轴于点C ,联结AB 、AC ,求△ABC 的面积;
(3)在(2)的条件下,设直线y =x +2与y 轴交于点D ,在射线CB 上有一点E ,如果以点A 、C 、E 所组成的三角形与△ACD 相似,且相似比不为1,求点E 的坐标.
图1
动感体验
请打开几何画板文件名“15宝山嘉定24”,拖动点E 在射线CB 上运动,可以体验到,△ACE 与△ACD 相似,存在两种情况.
思路点拨
1.直线AD //BC ,与坐标轴的夹角为45°.
2.求△ABC 的面积,一般用割补法.
3.讨论△ACE 与△ACD 相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.
满分解答
(1)将点A (2, m )代入y =x +2,得m =4.所以点A 的坐
相似三角形综合复习(1)
1、在△ABC中,M在AB上,且 MB=4,AB=12, AC=16,在AC上有一点N,使△AMN与原 三角形相似,则AN的长为________。32 或6 3
2、已知:ΔABC , P是边 AB 上的一点,连 ∠B 结 CP.(1)当∠ACP=________ 时,ΔACP∽ΔABC. (2)当 AC : AP= AB:AC 时, ΔACP ∽ΔABC.理由:∠A是公共角。 两个角对应相等的三角形相似
AC AB AP AC
3、在三角形ABC中, ∠ACB=90°,CD⊥AB于D。8 ①若AD=4,BD=16,则CD=_______; 20 ②若AC=10,AD=5,则AB=______; 12 ③若AD=7,BD=9,则BC=__________; ④若△ACD与△CBD的面积比为1:4. 1:2 AD:CD=_______; AD:BD=______; 1:4 △ACD与△ABC的面 积比为_______; 1:5
4、如图,D、E是ΔABC的边AB、AC上的 点,∠A=350, ∠C= 850,∠AED= 600. 求证:(1) ΔADE∽ΔACB (2) AD· = AE · AB AC证明:(1)∵
相似三角形的识别1
相似三角形的识别1
(一)
相似三角形的识别1
相似三角形的识别1
1、你还记得什么叫相似三角形吗对应角相等,对应边成比例的三角形叫相似三角形。
2、两个三角形相似,必须满足什么条件?如果∠A= ∠ A ' ' ∠B= ∠ B ∠C= ∠ C图 18.3.3
'
AB AC BC A' B ' A'C ' B 'C '
相似三角形的识别1
想一想2、若给定两个三角形,你有什么办法来判断它们是否相似?
通过定义:
三个角对应相等 三边对应成比例
是否存在识别两个三角形相似的 简便方法呢?
相似三角形的识别1
观察你与老师的直角三角尺 (45 与45 ) ,会相似吗?
这两个三角形的三个内角的 大小有什么关系?
相 似
三个内角对应相等。
三个内角对应相等的两个三角 形一定相似吗?
相似三角形的识别1
探索:如果一个三角形的三个角与另一个三角形 的三个角对应相等,那么它们相似吗?
试一试:任意画两个三角形,使其三对角对应相等.用刻 度尺量两个三角形的对应边,看看两个三角形的 对应边是否成比例.与你的同伴交流,你所画的三角形相似吗?
似三角形的识别.exe示
相似三角形的识别1
相似三角形的识别方法3:如果一个三角形的两角分别与另一个三 角形的两角对应相等,那么这两个三角形相似
相似三角形综合复习(1)
1、在△ABC中,M在AB上,且 MB=4,AB=12, AC=16,在AC上有一点N,使△AMN与原 三角形相似,则AN的长为________。32 或6 3
2、已知:ΔABC , P是边 AB 上的一点,连 ∠B 结 CP.(1)当∠ACP=________ 时,ΔACP∽ΔABC. (2)当 AC : AP= AB:AC 时, ΔACP ∽ΔABC.理由:∠A是公共角。 两个角对应相等的三角形相似
AC AB AP AC
3、在三角形ABC中, ∠ACB=90°,CD⊥AB于D。8 ①若AD=4,BD=16,则CD=_______; 20 ②若AC=10,AD=5,则AB=______; 12 ③若AD=7,BD=9,则BC=__________; ④若△ACD与△CBD的面积比为1:4. 1:2 AD:CD=_______; AD:BD=______; 1:4 △ACD与△ABC的面 积比为_______; 1:5
4、如图,D、E是ΔABC的边AB、AC上的 点,∠A=350, ∠C= 850,∠AED= 600. 求证:(1) ΔADE∽ΔACB (2) AD· = AE · AB AC证明:(1)∵
相似三角形说课稿
《相似三角形》说课稿
各位领导、老师下午好!
今天我说的内容是:人教版九年级数学下册《相似三角形》
我将从教材分析、学情分析、教学模式、教学设计、板书设计、课堂评价6个方面来对本课进行说明 一、 说教材
1、教材所处的地位和作用
《相似三角形》是义务教育数学课程标准实验教材。相似三角形的知识是在全等三角形的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,另外相似三角形的性质还是研究相似多边形性质的基础,也是今后研究圆中线段关系的有效工具。同时对后续教学内容起奠基作用,也为学生今后学习和生活更好的运用数学做准备。 2、教学目标
(1)知识目标 探索相似三角形、相似多边形的性质,会运用相似三角形、相似多边形的性质解决有关问题;
(2)能力目标 通过教学渗透类比的思想方法,培养学生探究新知识的能力及运用所学知识解决实际问题的能力。
(3)情感目标: 让学生在探求知识的活动过程中体会成功的喜悦,从而增强其学好数学的信心。
3、教学重点、难点:
本课重点是深入理解认识相似三角形的概念 难点是 ①相似三角形性质的应用;
②促进学生有条理的思
相似三角形教案
相似三角形教案
一、教学目标
知识与技能
1. 理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
2. 能用相似三角形周长的比等于相似比、面积比等于相似比的平方来解决简单的问题。
过程与方法
1. 经历探索相似三角形性质的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。
2.在探索实践中培养学生分析问题、解决问题的能力。
情感态度与价值观
1. 在获得知识的过程中培养学习的自信心 ,知道数学来源于生活有服务于生活。
2. 敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.
二、重点难点
重点
理解并掌握相似三角形周长的比等于相似比、面积比等于相似比的平方。
难
点
相似三角形性质的灵活运用,及对“相似三角形面积的比等于相似比的平方”性质的理解,特别是对它的反向应用的理解,即对“由面积比求相似比”的理解.
三、学情分析
相似三角形的周长与面积在初中数学和中考中占有重要的位置,同时,在日常生活生产中也有广泛的应用,因此这是一节很重要的课题。学生已学习相似形的性质和判定,以及全等三角形的有关知识,在此基础上研究本节课,学生应感到并不困难。
四、教学过程设计
教学知: ABC∽ A’B’C’,根据相似的定义,我们有哪些结论?
2、
相似三角形的存在性问题
相似三角形的存在性问题 288y??y??y??例1.如图,双曲线 和 在第二象限中的图像,A点在 的xxx图像上,点 2y??A的横坐标为m(m<0),AC∥y轴交 x图像于点AB,DC均平行于x轴,分别交 82、的图像于点B、D. y ??y??xx (1)用m表示A、B、C、D的坐标. (2)若⊿ABC与⊿ACD相似,求m的值. 分析:△ABC与△ACD保持直角三角形的性质不变 第一步 寻找分类标准 分两种情况: ABCAABCD ? ? ① ② ACCDACCA 第二步 无须画图——罗列线段的长 82 y??xxC?xA?m,yC?yD??????xD?4mm?BA???C?D28m y??xyB?yA?????x??Bm4 8??m8??A?m,??,B?,??,m??4m??2??2??C?m,??,D?4m,??m??m??3m46mAB??AC??CD??3m注:数形结合,当心负号 ① C