反比例函数的概念和性质

“反比例函数的概念和性质”相关的资料有哪些?“反比例函数的概念和性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“反比例函数的概念和性质”相关范文大全或资料大全,欢迎大家分享。

反比例函数的概念

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

小条函数知多少变量与常量在某一变化过程中不断变化的数量叫变量保持不变的量叫常量变量之间的关系在某一变化过程中如果一个变量随着另一个变量的变化而不断变化那么叫自变量驶胜彼岸叫因变量陀望回函数知多少一般地在某个变化中有炳个变量和如果给定一个的值相应地就确定的一个值那么我们称是的函数其中叫自变量叫因变量老师提示驶胜这里的函数是一个单值函数彼岸函数的奥质是两个变量之间的为系陀望回顺与么函数知多少函数的表

小条函数知多少变量与常量在某一变化过程中不断变化的数量叫变量保持不变的量叫常量变量之间的关系在某一变化过程中如果一个变量随着另一个变量的变化而不断变化那么叫自变量驶胜彼岸叫因变量陀望回函数知多少一般地在某个变化中有炳个变量和如果给定一个的值相应地就确定的一个值那么我们称是的函数其中叫自变量叫因变量老师提示驶胜这里的函数是一个单值函数彼岸函数的奥质是两个变量之间的为系陀望回顺与么函数知多少函数的表

小条函数知多少变量与常量在某一变化过程中不断变化的数量叫变量保持不变的量叫常量变量之间的关系在某一变化过程中如果一个变量随着另一个变量的变化而不断变化那么叫自变量驶胜彼岸叫因变量陀望回函数知多少一般地在某个变化中有炳个变量和如果给定一个的值相应地就确定的一个值那

反比例函数的概念

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

小条函数知多少变量与常量在某一变化过程中不断变化的数量叫变量保持不变的量叫常量变量之间的关系在某一变化过程中如果一个变量随着另一个变量的变化而不断变化那么叫自变量驶胜彼岸叫因变量陀望回函数知多少一般地在某个变化中有炳个变量和如果给定一个的值相应地就确定的一个值那么我们称是的函数其中叫自变量叫因变量老师提示驶胜这里的函数是一个单值函数彼岸函数的奥质是两个变量之间的为系陀望回顺与么函数知多少函数的表

小条函数知多少变量与常量在某一变化过程中不断变化的数量叫变量保持不变的量叫常量变量之间的关系在某一变化过程中如果一个变量随着另一个变量的变化而不断变化那么叫自变量驶胜彼岸叫因变量陀望回函数知多少一般地在某个变化中有炳个变量和如果给定一个的值相应地就确定的一个值那么我们称是的函数其中叫自变量叫因变量老师提示驶胜这里的函数是一个单值函数彼岸函数的奥质是两个变量之间的为系陀望回顺与么函数知多少函数的表

小条函数知多少变量与常量在某一变化过程中不断变化的数量叫变量保持不变的量叫常量变量之间的关系在某一变化过程中如果一个变量随着另一个变量的变化而不断变化那么叫自变量驶胜彼岸叫因变量陀望回函数知多少一般地在某个变化中有炳个变量和如果给定一个的值相应地就确定的一个值那

17.1.2反比例函数的图象和性质(1)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

黎集一中八年级备课组 教学设计

17.1.2反比例函数的图象和性质(1)

知识与技能 教学目标过程与方法 情感态度与价值观 1、体会并了解反比例函数的图象的意义 2、能描点画出反比例函数的图象 3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。 结合正比例函数y=kx(k≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容注意让学生体会数形结合的思想方法。 以积极探索的思想,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质。 重点 难点 第一步:课堂引入 提问: 1.一次函数y=kx+b(k、b数y=kx(k≠0)呢? 2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 方法与步骤——利用描点作图; 列表:取自变量x的哪些值? ——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。 描点:依据什么(数据、方法)找点? 连线:在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。 第二步:探索新知: 探索活动1 反比例函数y?注意强调: (1)列表取值时,x≠0,因为

17.1.2 反比例函数的图象和性质学案

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

17.1.2 反比例函数的图象和性质学案

17.1.2 反比例函数的图象和性质学案 一、 警句:

反比例函数双曲线,待定只需一个点, 正k落在一三限,两个分支分别减.

负k落在二四限,两个分支分别增;

图象上面任意点,矩形面积都不变。

二、课前展示:(教师点评)

三、学习目标:

1、能用待定系数法求反比例函数的解析式.

2、能用反比例函数的定义和性质解决实际问题. 四、预习过程:(预习内容:教材P44----P45) 五、小组讨论、合作探究: 一、探究研讨:

【活动1】老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=

?x

的图象上, 试判断点(-5,-2)是否也在此图象上.”题中的“? ”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.

例3;已知反比例函数的图象经过点A(2,6)

(1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?

(2)点B(3,4)、C(-2,-4)和D(2,5)是否在这个函数的图象

2

5

1

4

上?

六、展示汇报、质疑答疑:

17.1.2 反比例函数的图象和性质学案

例4;如图是反比例函数y=(m-5)/x的图象的一支。根据图象回答下列问题:

(1) 图象的另分布在哪些象限?常数m的取值范围是什么?

(完整版)反比例函数——基本概念和性质的复习汇总

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

O D A B y 课题: 反比例函数——基本概念和性质的复习 课型:复习课 学习目标:

1.梳理本章知识点,通过对知识点与相应问题的剖析,进一步巩固知识点;

2.通过师生探究与交流,增强学生的解决问题的能力,进一步体会数形结合的数学思想. 学习重点:通过师生探究与交流,进一步体会数形结合的数学思想.

一、预习导航

☆1、(1)下列函数,① 1)2(=+y x ②. 11+=

x y ③21x y =④.x y 21-=⑤2x y =- ⑥13y x

= ;其中是y 关于x 的反比例函数的有: 知识点:反比例函数的表达式: 、 、 . ☆2、如果反比例函数x k y 1+=

的图象位于第二、四象限,那么m 的范围为 . 知识点:反比例函数的图像和性质: .

☆3、 如图,直线y =mx 与双曲线x

k y =交于A 、B 两点,过点A 作AM ⊥x 轴, 垂足为M ,连结BM,若ABM S ?=2,则k 的值是( )

A .2

B 、m -2

C 、

课题:1742反比例函数的图象和性质

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

课题:17.4.2反比例函数的图象和性质

上课教师: 晋江市英墩中学 李玉琼 上课班级:晋江市英墩中学初二(5)班 上课时间:2014年3月26日第2节

一、教材背景分析

反比例函数,是学生继一次函数学习之后所接触又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,以及函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。

二、学生情况分析

初二年级的学生已经具有一定的观察、分析和归纳能力,因此这节课我们以学生为主体,引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别。本章前部分已经学习过一次函数了,但对函数这部分内容还不是十分熟练 . 对学生而言仍有一定难度,本节课的难点将会是对反比例函数性质的探索与理解.因而教学过程中充分渗透数形结合思想,结合图形突破难点. 对于所设置的问题为学生所熟悉,尽量贴近学生思维的最近发展区域,让学生感受到亲切、自然.

新课程标准指出“学生是学习的主人,教师是学习的组织者、引导者、和合作者。”本课以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为

17.1.2反比例函数的图象和性质(2)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

课 题 §17.1.2 反比例函数的图象和性质 (二) 1.理解y?时间 教知识技能 2.进一步理解反比例函数的性质,并能灵活应用反比例函数的定义及性质解决学实际问题,强化数形结合思想的运用. 目过程方法 在探究k的几何意义的过程中,培养学生探究、归纳、概括的能力. 的 情感态度价值观 k(k≠0)中k的几何意义,并能灵活应用. x在自主探究及应用反比例函数性质的过程中,让学生体验数学活动中的探索性、创造性. 理解y?教学重点 教学难点 教学手段 k(k≠0)中k的几何意义,灵活应用反比例函数的性质解决问题. x灵活应用反比例函数的定义及性质解决实际问题,强化数形结合思想的运用. 讲练结合 教 学 过 程 一、复习提问 1、反比例函数的图象及性质?增减性只由谁决定?(k,与x>0,x<0无关) 2、练习 ⑴如果函数y?(k?1)xk2?5是反比例函数,且y随x的增大而减小,那么k= 2 . ⑵已知一次函数y=ax+b的图象经过第一、二、四象限,则函数y?第 二、四象限. ⑶在函数y?ab的图象位于 xk(k>0)的图象上有三点A1 (-3.7,y1),A2 (-1,y2),A3 ( 2.2,y3),则y1、y2、y3x的大小关系为y2?y1?y3(用“<”连接) 二、新课 1、y?k(k≠0) 中k的代数意义:k=xy x即k等于双曲线上任意一点的横、纵坐标之积,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式. 2、y?k(

17.1.2反比例函数的图象和性质(2)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

课 题 §17.1.2 反比例函数的图象和性质 (二) 1.理解y?时间 教知识技能 2.进一步理解反比例函数的性质,并能灵活应用反比例函数的定义及性质解决学实际问题,强化数形结合思想的运用. 目过程方法 在探究k的几何意义的过程中,培养学生探究、归纳、概括的能力. 的 情感态度价值观 k(k≠0)中k的几何意义,并能灵活应用. x在自主探究及应用反比例函数性质的过程中,让学生体验数学活动中的探索性、创造性. 理解y?教学重点 教学难点 教学手段 k(k≠0)中k的几何意义,灵活应用反比例函数的性质解决问题. x灵活应用反比例函数的定义及性质解决实际问题,强化数形结合思想的运用. 讲练结合 教 学 过 程 一、复习提问 1、反比例函数的图象及性质?增减性只由谁决定?(k,与x>0,x<0无关) 2、练习 ⑴如果函数y?(k?1)xk2?5是反比例函数,且y随x的增大而减小,那么k= 2 . ⑵已知一次函数y=ax+b的图象经过第一、二、四象限,则函数y?第 二、四象限. ⑶在函数y?ab的图象位于 xk(k>0)的图象上有三点A1 (-3.7,y1),A2 (-1,y2),A3 ( 2.2,y3),则y1、y2、y3x的大小关系为y2?y1?y3(用“<”连接) 二、新课 1、y?k(k≠0) 中k的代数意义:k=xy x即k等于双曲线上任意一点的横、纵坐标之积,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式. 2、y?k(

17.1.2 反比例函数的图象和性质学案

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

17.1.2 反比例函数的图象和性质学案

17.1.2 反比例函数的图象和性质学案 一、 警句:

反比例函数双曲线,待定只需一个点, 正k落在一三限,两个分支分别减.

负k落在二四限,两个分支分别增;

图象上面任意点,矩形面积都不变。

二、课前展示:(教师点评)

三、学习目标:

1、能用待定系数法求反比例函数的解析式.

2、能用反比例函数的定义和性质解决实际问题. 四、预习过程:(预习内容:教材P44----P45) 五、小组讨论、合作探究: 一、探究研讨:

【活动1】老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=

?x

的图象上, 试判断点(-5,-2)是否也在此图象上.”题中的“? ”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.

例3;已知反比例函数的图象经过点A(2,6)

(1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?

(2)点B(3,4)、C(-2,-4)和D(2,5)是否在这个函数的图象

2

5

1

4

上?

六、展示汇报、质疑答疑:

17.1.2 反比例函数的图象和性质学案

例4;如图是反比例函数y=(m-5)/x的图象的一支。根据图象回答下列问题:

(1) 图象的另分布在哪些象限?常数m的取值范围是什么?

反比例函数的图像与性质(3)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

很好

反比例函数的图象与性质 (3)三矿中学 高旭芳

很好

教学目标: 教学目标:1.进一步巩固作反比例函数的图象 进一步巩固作反比例函数的图象. 进一步巩固作反比例函数的图象 2.逐步提高从函数图象中获取信息的能力,探索并掌握反 逐步提高从函数图象中获取信息的能力, 逐步提高从函数图象中获取信息的能力 比例函数的主要性质. 比例函数的主要性质 3.通过对图象性质的研究,训练学生的探索能力和语言组 通过对图象性质的研究, 通过对图象性质的研究 织能力. 织能力 教学重点:通过观察图象, 教学重点:通过观察图象,概括反比例函数图象的共同特 反比例函数的主要性质. 征,探索 反比例函数的主要性质 教学难点: 教学难点:从反比例函数的图象中归纳总结反比例函数的 主要性质. 主要性质

很好

温故而知新问题情景,导入新课。 问题情景,导入新课。 1.什么是反比例函数? 什么是反比例函数? 什么是反比例函数 k 一般地, 是常数, 的函数叫做反比例函数。 一般地,形如 y = — ( k是常数 k≠0 ) 的函数叫做反比例函数。 是常数 x 2.反比例函数的图象是什么 图象的位置由谁决定 分别在哪些象限 反比例函数的图象是什么?图象的位置由谁决定 分别在哪些象限?