平面向量单元教学设计
“平面向量单元教学设计”相关的资料有哪些?“平面向量单元教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“平面向量单元教学设计”相关范文大全或资料大全,欢迎大家分享。
平面向量基本定理教学设计
平面向量基本定理教学设计
2
黎栋材1, 王尚志1
()首都师范大学数学科学学院 1北京师范大学附属实验中学 11.00048;2.00032
]就《平面向量基本定理》的教学重点进1 文[
并就定理本身给出了两点具体的建议,行了分析,
很受启发.文[基于新课程理念,为平面向量的2]教学提出宝贵的建议.笔者认为,中学数学教学除还需要以学生的了要高观点认识数学本质之外,
认知水平,在学生已有知识上建构新的知识体系,从而发展学生的思维能力.1 内容及地位分析
1.1 向量改变学生对运算的认识
向量是近代数学的产物,是非常重要和基本的概念之一.向量具有一套与数的运算截然不同特别是向量的数量积属于“的运算系统,V×V→的运算,这对学生而言是一次对运算认识的R型”
2]
,而平面向量基本定理则是统一不同运算飞跃[
系统中转站,是展示数学魅力的良好载体.1.2 平面向量基本定理是沟通数与形的桥梁平面向量的加法、减法以及实数与向量的积均体现向量的几何特征,一旦有了平面向量基本平面内的向量便与一对有序实数构定理作保证,
建了一一对应的关系,于是,向量的加法、减法、实数与向量的积、向量的数量积、两个向量平行与垂直、两个向量的夹角等都可以转化为代数运算,从另外,利用向而实现向量
平面向量的加法教学设计
平面向量的加法教学设计
伍海青 2012.2
(一)知识目标 1、向量加法的意义.
2、三角形法则和平行四边形法则. 3、向量加法的交换律和结合律. (二)能力目标
1、能用三角形法则和平行四边形法则作几个向量的和向量. 2、能运用向量加法的运算律进行向量计算.
3、培养学生数形结合的思想和抽象与概括、分析与综合的思维方法. (三)德育目标
1、根据向量加法法则的引入过程,使学生认识到不同学科之间存在一定的联系.
2、通过对本节课的学习,使同学们认识到掌握知识的规律:从“观察与实验”到“分析与综合”,再到“抽象与概括”.
教学重点
1、对向量加法意义的理解.
2、三角形法则和平行四边形法则的原理. 3、向量加法的交换律和结合律. 教学难点
1、两种法则的具体运用.
2、灵活运用向量加法的运算律. 教学方法
多媒体辅助,启发式、交互式教学. 教学过程 新课引入
复习:向量是既有大小,又有方向的量. 平移前后的两个向量相等.
引入:同学们都知道,实数是有大小的量,可以进行四则运算.而向量是既有大小又有方向的量,它是否也可以进行运算呢? (电脑演示“两岸直航”示例)
首先我们来看物理中的“位移”和“力”是怎样求和的:
1. 某人从A到
平面向量基本定理教学设计
学习必备 欢迎下载
《平面向量基本定理》教学设计
一、教学内容
本节内容是《普通高中课程标准实验教科书·数学必修4(人教A版)》第二章2.3.1平面向量基本定理。学生在学习平面向量实际背景及基本概念、平面向量的线性运算(向量的加法、减法、数乘向量、共线向量定理)之后的又一重点内容,它是引入向量坐标表示,将向量的几何运算转化为代数运算的基础,使向量的工具性得到初步的体现,具有承前启后的作用。 二、教学方法与教学手段
本节课为新授课。根据班级的实际情况,在教学中积极践行新课程理念,倡导合作学习;注重学生动手操作能力与自主探究能力;在教学活动中始终以教师为主线、学生为主体,让学生经历动手操作、合作交流、观察发现、归纳总结等一系列的学习活动。教学方法是综合法,教学手段采用学案式(因条件限制,不使用多媒体)。 三、三维目标 1、知识与技能
(1)了解平面向量基本定理及其意义,会用基底表示某一向量;掌握两个向量夹角的定义及二向量垂直的概念,会初步求解简单的二向量夹角问题,会根据图形判断两个向量是否垂直。 (2)培养学生作图、判断、求解的基本能力。 2、过程与方法
(1)经历平面向量基本定理的探究过程,让学生体会由特殊到一般的思维方法;
(2)通
平面向量作业
大毛毛虫★倾情搜集★精品资料
向量
1、在△ABC中,AB=AC,D、E分别是AB、AC的中点,则( )
???????1??????????????????????????A、AB与AC共线 B、DE与CB共线C、ADsin?与AE相等 D、AD与BD相等
2、下列命题正确的是( )
????????A、向量AB与BA是两平行向量
????aaB、若、b都是单位向量,则=b
????????C、若AB=DC,则A、B、C、D四点构成平行四边形
D、两向量相等的充要条件是它们的始点、终点相同 3、在下列结论中,正确的结论为( )
????????????(1)a∥b且|a|=|b|是a=b的必要不充分条件;(2)a∥b且|a|=|b|是a=b的既不充分也不必要条件;????????????(3)a与b方向相同且|a|=|b|是a=b的充要条件;(4)a与b方向相反或|a|≠|b|是a≠b的充分不必要条
件A、(1)(3) B、(2)(4) C、(3)(4) D、(1)(3)(4)
4、把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向
22.7平面向量
第四节
平面向量及其加减法
22.7 平面向量上海市民办文绮中学 杨卓远
试一试:
在上新课之前,
谈谈你对向量的了解! 越多越好哟!
课题引入如图,从点A向东走5米到达点B,与从点A向
北走5米到达点C,两者有什么区别?再看从点A向东走5米到达点B,与从点A向西 走5米到达点D,两者又有什么区别?C
5米 5米D
5米AB
向量的定义由以上的讨论可以看出,世界上确实存在着“既有大小、又有方向的量” . 表明我们有必 要对这种量进行学习和研究.
既有大小、又有方向的量叫做向量(vector) .C
5米 5米D
5米AB
向量的表示方法 图中向量可表示为:有向线段 AB ,其中 A为始点,B为终点.B
AB的大小,称为向量的模,记作 AB ;
始点 A和终点 B间的距离表示向量
A
自始点 A指向终点 B的方向表示向量的方向.
比较:线段 AB与线段 BA一样吗?向量 AB 与向量 BA一样吗?
向量的表示方法向量还可以用小写的粗体英文字母表示,如 a、b、c、…;手写时,在字母上方加箭头,
如 a 、b 、c 、…(见下图),它们的模分别 b c 记作 a 、 、 、… .
a
b
c
练习:如图,
从平面向量到空间向量
从平面向量到空间向量学案
第一节 :从平面向量到空间向量
设计人:陈维江 审核人:席静
上课时间: 班级: 姓名:
学习目标:1、理解空间向量的概念;
2、掌握空间向量的几何表示法和字母表示法;
3、掌握两个空间向量的夹角、空间向量的方向向量和平面的法向量的概念。
学习重点:理解两个向量的夹角、直线的方向向量、平面的法向量等概念 学习难点:理解共面向量的概念
新课学习:
看课本25-26页回答下列问题:
从平面向量到空间向量学案
做27页练习 总结:本节概念较多,多看课本,理解概念是关键。 课后作业:
平面向量典型例题
平面向量经典例题:
1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于()
A.-2B.-1
3
C.-1 D.-2
3
[答案] C
[解析]λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1.
2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=()
A.-1 B.- 3
C.-3 D.1
[答案] C
[解析]a+2b=(3,1)+(0,2)=(3,3),
∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3.
(理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为()
A.-6
11B.-
11
6
C.6
11 D.
11
6
[答案] C
[解析]a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直,
∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11.
3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为()
A.150°B.120
平面向量数量积
平面向量数量积的 物理背景及其含义
教学目标:掌握平面向量数量积的概念, 掌握平面向量数量积的概念,能用它来 表示向量的模及向量的夹角
教学重点:平面向量数量积的运算律, 平面向量数量积的运算律,用它来表示向量的模及向量的夹角
教学难点:平面向量数量积的定义及运算律的理解, 平面向量数量积的定义及运算律的理解,平面向量数量积的应用
如图所示:物体在力F的作用下由A移动到B 问力F 如图所示:物体在力F的作用下由A移动到B,问力F 所作的功? 所作的功? F θ S A B F
力对物体所做的功,等于力的大小、位移的大小、 力与位移夹角的余弦这三者的乘积。
W= F S cosθ
已知两个非零向量a与b,我们把数量|a||b|cos θ叫做 a b a b a与b的数量积,记作a ·b ,即 b a b a ·b= |a||b|cos θ b a b 其中θ是a与b的夹角, |a|cos θ( |b|cos θ )叫 a b a b 做向量a在b方向上( b 在 a方向上 )的投影。 a b ( A a O A1 b 几何意义:数量积a ·b等于a的长度|a|与b在a的方向上的 a b a a b a 投影|b|cos θ的乘积
平面向量基本练习
一、选择题 1.若向量a=(3,2),b=(0,-1),则向量2b-a的坐标是( )
A.(3,-4) B.(-3,4) C.(3,4) D.(-3,-4)
2.设坐标原点为O,抛物线y2=2x与过焦点的直线交于A、B两点,则OA?OB等于( )
A.
3 4 B.-
3 4 C.3 D.-3
3.若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于( ) A.-
331311a+b B.a-b C. a-b 222222D.-
31a+b 224.设a、b、c是任意的非零平面向量,且相互不共线,则
①(a·b)c-(c·a)b=0 ②|a|-|b|<|a-b| ③(b·c)a-(c·a)b不与c垂直 ④(3a+2b)(3a-2b)=9|a|2-4|b|2中,是真命题的有( ) A.①② B.②③ C.③④ D.②④ 5.已知向量a和b的夹角为120°,且|a|=2,|b|=5,则(2a-b)·a=_____.
10.若非零向量α、β满足|α+β|=|α-β|,则α与β所成角的大小为_____.
11.已知向量OA=(-1,2),OB=(3,m),若OA⊥AB,则m= . 6.设a=(m+1)i-3j,b=i+(m-1)j,(a+b)⊥(a-b),则m=_____. 7.已知a+b=2i-8j,a-b=-8i+16j,那么a·b=_____.
8、已知ABA.2
9、若平面向量与向量
A.
平面向量专题复习
专题复习:平面向量
一、本章知识结构:
二、重点知识回顾
1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.
??a2.向量的表示方法:①用有向线段表示;②用字母、b等表示;③平面向量的坐标表示:分
???yjaix别取与轴、轴方向相同的两个单位向量、作为基底。任作一个向量,由平面向量基
????xiy?yj,(x,y)叫做向量a的(直角)坐标,本定理知,有且只有一对实数x、,使得a?yya记作?(x,y),其中x叫做a在x轴上的坐标,叫做a在轴上的坐标, 特别地,
????22ai?(1,0),j?(0,1),0?(0,0)。?x?y;若A(x1,y1),B(x2,y2),则
AB??x2?x1,y2?y1?,
AB?(x2?x1)2?(y2?y1)2 3.零向量、单位向量:①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,
a叫单位向量.(注:|a|就是单位向量)
??a04.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行.向量、?????b、c平行,记作a∥b∥c.共线向量与平行向量关系:平行向量就是共线向量.
5.相等向量:长度相等且方向相同的向量叫相等向量.
6.向量的加法、减法:
①求