中考数学试卷二次函数题

“中考数学试卷二次函数题”相关的资料有哪些?“中考数学试卷二次函数题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中考数学试卷二次函数题”相关范文大全或资料大全,欢迎大家分享。

重庆中考数学二次函数26题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

1、如图1,抛物线y?1213x?x?3与x轴相交于A、B两点(点A在点B的右侧),已知C(0,)。连接2222FH,求l的最大值。(3)如图2,3AC。(1)求直线AC的解析式。(2)点P是x轴下方的抛物线上一动点,过点P作PE⊥x轴交直线AC于点E,交x轴于点F,过点P作PG⊥AE于点G,线段PG交x轴于点H。设l=EP—

在(2)的条件下,点M是x轴上一动点,连接EM、PM,将△EPM沿直线EM折叠为△EP1M,连接AP,AP1。当△APP1是等腰三角形时,试求出点M的坐标。

2.已知抛物线y??x2?2x?c与x轴交于A、B两点,其中点A (-1,0).抛物线与y 轴交于点C,顶点为D,点N在抛物线上,其横坐标为

5. http://www.lhjy.net.cn/ 2(1)如图1,连接BD,求直线BD的解析式;

(2)如图2,连接BC,把△OBC沿x轴正方向平移,记平移后的三角形为△O′B′C ′,当点C ′ 落在△BCD内部时,线段B′C ′与线段DB交于点M,设△O′B′C ′与△BCD重叠面积为T,若T=http://www.lhjy.net.cn/

(3)如图3,连接CN,点P为直线CN上的动点,点Q在抛物线上,连接CQ、PQ得

中考数学-二次函数综合

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

2020年-春季-二次函数综合1.(初2020级重庆巴蜀初三下第三次模拟)

2.(初2020级重庆南开初三下第三次模拟)

3.(初2020级重庆西附初三下第三次模拟)

4.(初2020级重庆一外初三下第三次模拟)

5.(初2020级重庆一中初三下第三次模拟)

6.(初2020级重庆巴蜀初三下第二次模拟)

7.(初2020级重庆一中初三下第二次模拟)

8.(初2020级重庆一外初三下第二次模拟)

9.(初2020级重庆育才初三下第二次模拟)

10.(初2020级万二中初三下第二次模拟)如图,在平面直角坐标系中,直线y=﹣x+5与x

轴交于点B,与y轴交于点C.抛物线

y=x2+bx+c经过点B和点C,与x轴交于另一点A,连接AC.

(1)求抛物线解析式;

(2)若点Q在直线BC上方的抛物线上,连接QC,QB,当△ABC与△QBC的面积比等于2:3时,求点Q的坐标:

(3)在(2)的条件下,点H在x轴的负半轴,连接AQ,QH,当∠AQH=∠ACB时,求点H的坐标.

11.(初2020级重庆八中初三下第一次模拟)

12.(初2020级重庆巴蜀初三下第一次模拟)

13.(初2020级重庆南开初三下第一次模拟)

14.(初2020级重庆一中初三下第一次模拟)

15.(初2020级重庆育才初

中考数学二次函数压轴题题型归纳

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

页眉内容

中考二次函数综合压轴题型归类

一、常考点汇总

1、两点间的距离公式:()()22B A B A x x y y AB -+-=

2、中点坐标:线段AB 的中点C 的坐标为:???

??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:

(1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠

(3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k

3、一元二次方程有整数根问题,解题步骤如下:

① 用?和参数的其他要求确定参数的取值范围;

② 解方程,求出方程的根;(两种形式:分式、二次根式)

③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。

例:关于x 的一元二次方程()0122

2=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上)

例:若抛物线()3132

+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。

5、方程总有固定根问题,可以通过解方程的方法求

中考二次函数压轴题及答案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

中考二次函数压轴题及答案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

北京各区中考数学 二次函数及压轴题人教版

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

朝阳

24.(本小题满分7分)

已知直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线y??32x?mx?n经过点A和点C,4动点P在x轴上以每秒1个长度单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿线段CA向点A运动且速度是点P运动速度的2倍. (1)求此抛物线的解析式和直线的解析式; (2)如果点P和点Q同时出发,运动时间为t(秒),试问当t为何值时,△PQA是直角三角形;

(3)在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大,若存在,求出点D坐标;若不存在,

请说明理由.

崇文

25.已知抛物线y?ax2?bx?1经过点A(1,3)和点B(2,1). (1)求此抛物线解析式;

(2)点C、D分别是x轴和y轴上的动点,求四边形ABCD周长的最小值;

(3)过点B作x轴的垂线,垂足为E点.点P从抛物线的顶点出发,先沿抛物线的对称轴到达F点,再沿FE到达E点,若P点在对称轴上的运动速度是它在直线FE上运动速度的2倍,试确定点F的位置,使得点P按照上述要求到达E点所用的时间最短.(要求:简述确定F点位置的方法,但不要求证明)

23.已知P(?3,m)和Q(1,m)是抛物线y?2x?bx?1上的两点

中考二次函数压轴题及答案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

二次函数压轴题精讲

1.二次函数综合题

(1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.

(2)二次函数与方程、几何知识的综合应用

将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题

从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

第1页(共90页)

例1. 已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交

点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.

(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;

(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P

中考数学二次函数压轴题精编(含答案)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

(2010湖北咸宁)16.如图,一次函数y?ax?b的图象与x轴,y轴交于A,B两点,

k

的图象相交于C,D两点,分别过C,D两

y x

D 点作y轴,x轴的垂线,垂足为E,F,连接CF,DE. B 有下列四个结论: A O x F ①△CEF与△DEF的面积相等; ②△AOB∽△FOE;

E C ③△DCE≌△CDF; ④AC?BD.

其中正确的结论是 .(把你认为正确结论的序号都填上) (第16题) (2010江苏徐州)25.(本题8分)如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函

与反比例函数y?数y=

m的图象的两个交点,直线AB与y轴交于点C. x (1)求反比例函数和一次函数的关系式; (2)求△AOC的面积; (3)求不等式kx+b-

m<0的解集(直接写出答案). xy 3 2 1 A -3 -2 -1 O 1 2 3 x -1 121. (2009遂宁)把二次函数y??x2?x?3用配方法化成y?a?x?h??k的形式 B -2 4A.y??1?x?2?2?2 B. y?1?x?2?2?4

4411?C.y??1?x?2?2?4 D. y???x???3 42??22-3 (第21题)

2. (2009嘉兴)已知a?0,在同一直角坐标系中,函数y?ax与y?ax2的图象有可能是( ▲ )

yy?1yy1Ox?1O1x?1O1x?1O1xABCD

3. (2009烟台)二

历年中考真题二次函数精选

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

备战2012年中考数学

4.(2011.重庆)已知抛物线y?ax?bx?c(a?0)在平面直角

2坐标系中的位置如图所示,则下列结论中,正确的是( ) A、a>0 B b<0 C c<0 D a+b+c>0

6.(2011.山东荷泽)如图为抛物线y?ax?bx?c的图像,A B C 为抛物线与坐标轴

2的交点,且OA=OC=1,

则下列关系中正确的是

A. a?b??1 B. a?b??1 ( 第 6 题图 ) C. b<2a D. ac<0

13.(2011.义乌)如图,一次函数y=-2x的图象与二次函数y=-x+3x图象的对称轴

2

交于点B.

(1)写出点B的坐标 ▲ ;

2

(2)已知点P是二次函数y=-x+3x图象在y轴右侧部分上的一 ..

个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于 C、D两点. 若以CD为直角边的△PCD与△OCD相似,则点 P的坐标为 ▲ .

D O

C

B

214.(2011贵阳)如图所示,二次函数y??x?2x?m的图

象与x轴的一个交点

为A(3,0),另一个交点为B,且与y轴交于点

中考二次函数与圆综合训练题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

例1:如图,直径为5的⊙M圆心在x轴正半轴上, ⊙M与x轴交于A、B两点,与y轴交于C、D两 点,且CD=4,抛物线经过A、B、C三点, 顶点为N.(1)求该抛物线的解析式;y

D

E

A C

O M

B

x

N

(2)直线NC与x轴交于点E,试判断直线CN 与⊙M的位置关系并说明理由;y

D

E

A C

O

M

B

x

N

(3)设点Q是抛物线对称轴上的一点,试问 在抛物线上是否存在点P,使得以A、B、P、 Q为顶点的四边形是平行四边形?若存在,求 出点P的坐标;若不存在,请说明理由.y

D

E

A C

O M

B

x

N

例2:如图,在平面直角坐标系中,抛物线 y=ax 2+bx+c(a≠0)的图象经过M(1,0)和 N(3,0)两点,且与y轴交于 D(0,3),直线l是抛物线的对称轴. (1)求该抛物线的解析式;y l

D

AO

M

N

x

(2)若过点A(-1,0)的直线AB与抛物 的对称轴和x轴围成的三角形面积为6,求此 直线的解析式;

y

l

D

AO

M

N

x

(3)点P在抛物线的对称轴上,⊙P与直线 AB和x轴都相切,求点P的坐标.

y

l

D

AO

M

N

x

例3:如图,已知抛物线y=- x 2+bx+c与x 轴相交于A、B两点,顶点为C,其对称轴为 直线x=2,且与x轴交于点D,AO=1.