二次函数动点问题解题技巧
“二次函数动点问题解题技巧”相关的资料有哪些?“二次函数动点问题解题技巧”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数动点问题解题技巧”相关范文大全或资料大全,欢迎大家分享。
二次函数典型题解题技巧
二次函数典型题解题技巧
(一)有关角
21、已知抛物线y?ax?bx?c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线
y?x?5经过D、M两点.
(1) 求此抛物线的解析式;
(2)连接AM、AC、BC,试比较?MAB和?ACB的大小,并说明你的理由.
思路点拨:对于第(1)问,需要注意的是CD和x轴平行(过点C作x轴的平行线与抛物线交于点D)
对于第(2)问,比较角的大小
a、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就
清楚了
b、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就
确定了
c、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大
小
d、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全
等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等
e、 可能还有人会问,这么想我不习惯,太复杂了,
二次函数动点问题解答方法技巧(含例解答案)
函数解题思路方法总结:
⑴ 求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶ 根据图象的位置判断二次函数ax2+bx+c=0中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、 抛物线上动点
5、(湖北十堰市
二次函数动点问题(含答案)
二次函数的动态问题(动点)
1.如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形
MDNA的面积为S.若点A,点D同时以每秒1个单位
的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
[解] (1)点A(?40,),点B(?20,),点E(08,)关于原点的对称点分别为D(4,0),C(2,0),
F(0,?8).
设抛物线C2的解析式是
y?ax2?bx?c(a?0),
?16a?4b?c?0,?则?4a?2b?c?0, ?c??8.?,?a??1?解得?b?6,
?c??8.?所以所求抛物线的解析式是y??x?6x?8.
二次函数与圆综合动点问题
二次函数与圆综合动 点问题 1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
y
y=x+b
D M 4 C
3 2 1
A B
x ?1 O 1
2.如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA?没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm. (1)求x、y所满足的关系式,并写出x的取值范围. (2)当△MOP为等腰三角形时,求相应的x的值. B
M Q
O P A
3.如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积;
(3)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=k,△CP
二次函数压轴题解题思路
二次函数压轴题解题思路
一、基本知识 1会求解析式
2.会利用函数性质和图像
3.相关知识:如一次函数、反比例函数、点的坐标、方程。图形中的三角形、四边形、圆及平行线、垂直。一些方法:如相似、三角函数、解方程。一些转换:如轴对称、平移、旋转。 二、典型例题: (一)、求解析式
1.(2014莱芜)过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式; 2.(2012莱芜)顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;
练习:(2014兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )Ay=﹣2(x+1)2+2By=﹣2(x+1)2﹣2Cy=﹣2(x﹣1)2+2Dy=﹣2(x﹣1)2﹣2 (二)、二次函数的相关应用 第一类:面积问题
例题.(2012莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y
轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;(抛物线的解析式:y=(x
二次函数压轴题解题思路
二次函数压轴题解题思路
一、基本知识 1会求解析式
2.会利用函数性质和图像
3.相关知识:如一次函数、反比例函数、点的坐标、方程。图形中的三角形、四边形、圆及平行线、垂直。一些方法:如相似、三角函数、解方程。一些转换:如轴对称、平移、旋转。 二、典型例题: (一)、求解析式
1.(2014莱芜)过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式; 2.(2012莱芜)顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;
练习:(2014兰州)把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( )Ay=﹣2(x+1)2+2By=﹣2(x+1)2﹣2Cy=﹣2(x﹣1)2+2Dy=﹣2(x﹣1)2﹣2 (二)、二次函数的相关应用 第一类:面积问题
例题.(2012莱芜)如图,顶点坐标为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)与y
轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;(抛物线的解析式:y=(x
二次函数压轴题解题技巧分类总结精华 一对一辅导必备
---二次函数
1
中考压轴题解析
二次函数常见压轴
y=x?2x?3(以下几种分类的函数解析式就是这个)
2和最小,差最大 在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标
在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标
y
B O C D A x 求面积最大 连接AC,在第四象限找一点P,使得?ACP面积最大,求出P坐标
讨论直角三角 连接AC,在对称轴上找一点P,使得?ACP为直角三角形,求出P坐标
或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.
y B O C D y A x
讨论等腰三角 连接AC,在对称轴上找一点P,使得?ACP为等腰三角形,求出P坐标
B O C D
A x 2
讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边
形为平行四边形,求点F的坐标
y B O C D A x 2、这里小改动,把C(0,-3)改成C(2,-3)
连接BC,在x轴上找一个点F,抛物线上找一点P,使得以B、C、F、G为顶点的四边形构成平行四边形
y B O D A x
(精)二次函数动轴与动区间问题
第1页(共5页) 二次函数在闭区间上的最值
一、 知识要点:
二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.
设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。
分析:将f x ()配方,得顶点为--?? ???b a
ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:
(1)当[]
-∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。
(2)当[]-
?b a m n 2,时 若-
m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[]
m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。
二、例题分析归类:
(一)、正向型
是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形
(精)二次函数动轴与动区间问题
第1页(共5页) 二次函数在闭区间上的最值
一、 知识要点:
二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.
设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。
分析:将f x ()配方,得顶点为--?? ???b a
ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:
(1)当[]
-∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。
(2)当[]-
?b a m n 2,时 若-
m n ,上是增函数则f x ()的最小值是f m (),最大值是f n () 若n b a <-2,由f x ()在[]
m n ,上是减函数则f x ()的最大值是f m (),最小值是f n () 当a <0时,可类比得结论。
二、例题分析归类:
(一)、正向型
是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形
中考历史题解题技巧
中考历史
历史材料题的解答技巧
一、解题方法
一是读懂材料;二是审清题目。
首先,弄清材料的含义和观点。
仔细阅读每一则材料,真正理清材料在说什么、说了几层含义,或材料对什么历史事件发表了见解,并归纳出有几种见解。这是解题的基础。
其次,深挖材料,还原历史背景。这是解题的关键,它决定了答案的来源。
(1)还原历史背景要抓住材料提供的各种有效信息。如:材料的含义、出处(包括材料出自文献的名称、作者及文献创作或发表的时间等);
(2)确定材料的历史背景后要注意联系相关知识,并将这些知识分门别类,作出系统的归纳。比如:材料是对某一历史事件发表的观点,就要弄清观点发表者的阶级立场、政治立场、观点的正误及其历史进步性和落后性,等等。
审清题目,就是抓住关键词弄清题目在问什么,弄清题目的考查意图。如:
(1)弄清题目是要求根据材料作答,还是结合所学知识作答;
(2)若针对观点提问,要注意问的是题目的观点、答题者的观点、还是历史上已成定论的观点;
(3)若考查原因,就要抓住根本、直接、历史、现实、主观、客观、政治、经济等关键性词语。
总之,审清题目对于正确答题至关重要,它决定了答题的方向和范围。
二、实战练习
【例题】据史分析,回答问题
材料一:(见下图)1972年2月21日,美国总统理