求函数参数的取值范围知识点
“求函数参数的取值范围知识点”相关的资料有哪些?“求函数参数的取值范围知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“求函数参数的取值范围知识点”相关范文大全或资料大全,欢迎大家分享。
求函数参数的取值范围
导数的应用——求函数中参数的取值范围
一、教学目标及要求:
1.掌握求函数中参数的常用方法
2.熟练解决题中恒成立、存在、任意等问题 3.了解相关数学思想和方法 二、主要命题方式:
方式一:给出函数的单调性,求函数的解析式中的参数取值范围
方式二:已知某个不等式在给定区间上恒成立,求解析式中的参数取值范围
方式三:已知函数的极值点、极值、极值点的个数。求函数解析式中参数的取值范围 三、典例解析
命题方式一:给出函数的单调性,求函数的解析式中的参数取值范围 例1:已知函数f(x)=(x2+bx+b) 1?2x(b?R) (1)当b=4时 求f(x)的极值。 (2)若f(x)在区间(0,
方法总结:
1)上单调递增,求b的取值范围。 3命题方式二:已知某个不等式在给定区间上恒成立, 求解析式中的参数取值范围
例2:已知函数f(x)=ex-ax,其中a>0,若对一切x?R、 f(x)≥1恒成立,求a的取值范围。
方法总结:
命题方式三:已知函数的极值点、极值、极值点的个数。求函数解析式中参数的取值范围
ex2例3.设函数f(x)?2?k(?lnx)(k为常数)xx
(完整版)利用导数求参数的取值范围方法归纳
利用导数求参数的取值范围
一.已知函数单调性,求参数的取值范围
类型1.参数放在函数表达式上
例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23.
的取值范围
求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(.
,3)()1(-∞=
二.已知不等式在某区间上恒成立,求参数的取值范围
类型1.参数放在不等式上
例3.已知时都取得极值与在13
2)(23=-=+++=x x c bx ax x x f
(1)求a、b的值及函数)(x f 的单调区间.
(2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32
3
的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--=
类型2.参数放在区间上
例4.已知三次函数d cx x ax x f ++-=2
35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值.
(1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围.
分析:(1)935)(23++-=x x x x f ]
3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3
1(9
解析几何中求参数取值范围的几种方法
解析几何中求参数取值范围的方法
http://www.TL100.com 作者:佚名 文章来源:天利淘题 更新时间:2010/3/20 8:56:02 分享
近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。那么,如何构造不等式呢?本文介绍几种常见的方法:
一、利用曲线方程中变量的范围构造不等式
曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.
例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 ,
抛物线与线段有交点时,求某一参数的取值范围(专题复习)
专题:抛物线与线段有交点时,求某一参数的取值范围
涉及的主要知识点:
(1)点在抛物线内满足的条件(不等式)、点在抛物线外满足的条件(不等式)。要根据抛物线的开口方向,数形结合;
(2)抛物线与直线相切满足的条件;
(3)抛物线与直线联立解方程,有时会含有参数; (4)直线的平移与对称;
(5)两直线垂直时,k1×k2=-1;及两直线平行时,k1=k2 (6)直角坐标系中线段的中点坐标公式
基本方法:多画图,数形结合思想及分类讨论思想的应用
例1、已知在平面直角坐标系xOy中,点A(0,2)、B(1,0),现将线段BA绕点B按顺时针方向旋转90°得到线段BD,点C为线段AB的中点,连接CD
(1)过点O、C、D的抛物线的解析式是
2
(2)若抛物线y=ax+x与线段CD有公共点,则a的取值范围是
解析:(1)略解。过点D作DE⊥x轴,然后根据K型图知D(3,1),由中点坐标公式得C(易得y=-
1,1) 2227x+x 332
(2)① 当a>0时,抛物线y
抛物线与线段有交点时,求某一参数的取值范围(专题复习)
抛物线与线段有交点时,求某一参数的取值范围(专题复习) 1 专题:抛物线与线段有交点时,求某一参数的取值范围 涉及的主要知识点: (1)点在抛物线内满足的条件(不等式)、点在抛物线外满足的条件(不等式)。要根据抛物线的开口方向,数形结合;
(2)抛物线与直线相切满足的条件;
(3)抛物线与直线联立解方程,有时会含有参数;
(4)直线的平移与对称;
(5)两直线垂直时,k 1×k 2=-1;及两直线平行时,k 1=k 2
(6)直角坐标系中线段的中点坐标公式
基本方法:多画图,数形结合思想及分类讨论思想的应用
例1、已知在平面直角坐标系xOy 中,点A (0,2)、B (1,0),现将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,点C 为线段AB 的中点,连接CD
(1)过点O 、C 、D 的抛物线的解析式是
(2)若抛物线y=ax 2+x 与线段CD 有公共点,则a 的取值范围是
解析:(1)略解。过点D 作DE ⊥x 轴,然后根据K 型图知D (3,1),由中点坐标公式得C (
21,1) 易得y=-32x 2+3
7x (2)① 当a >0时,抛物线y=ax 2+x 与x 轴的交点坐标为(-a
1,0)、(0,0),抛物线只可能与线段CD 有
函数与函数的零点知识点总结
函数及函数的零点有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。
(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数y?tanx中x?k???2(k?Z).
(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合
函数与函数的零点知识点总结
函数及函数的零点有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。
(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数y?tanx中x?k???2(k?Z).
(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合
函数与函数的零点知识点总结
函数及函数的零点有关概念
函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手:
(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。
(6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合即交集.(7)三角函数正切函数y?tanx中x?k???2(k?Z).
(8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合
电学取值范围计算
电学取值范围计算求不损坏电路元件时, 1.变阻器阻值的变化范围, 2.电路中电流变化范围, 3.用电器两端电压变化范围, 4.用电器功率变化范围, 5.电路总功率变化范围。
1.串联电路取值范围计算; 2.并联电路取值范围计算。
串联电路取值范围计算S A aR1 V
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下: 1. 滑动变阻器R2的调节范围是多少?
S A
aR1
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下: 2. 电路中电流大小的变化范围是多少?
S A
aR1
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “20Ω 1A”字样。求在不损坏各电路元件的情况下 , 3. 电阻R1两端电压的变化范围值是多少?
S A
aR1
P R2
b
在如图所示的电路中,电源电压为9V,定值电阻 R1=10Ω,电流表的量程为0~0.6A,滑动变阻器R2标有 “2
初中函数知识点总结
千承培训学校
函数知识点总结(掌握函数的定义、性质和图像)
(一)平面直角坐标系
1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系
2、各个象限内点的特征:
第一象限:(+,+) 点P(x,y),则x>0,y>0; 第二象限:(-,+) 点P(x,y),则x<0,y>0; 第三象限:(-,-) 点P(x,y),则x<0,y<0; 第四象限:(+,-) 点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征:
x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。
4、点的对称特征:已知点P(m,n),
关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征:
第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限