初中数学平行四边形经典例题

“初中数学平行四边形经典例题”相关的资料有哪些?“初中数学平行四边形经典例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“初中数学平行四边形经典例题”相关范文大全或资料大全,欢迎大家分享。

平行四边形经典例题 4-30

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

龙文教育学科老师个性化教案

中小学 1 对 1 课外辅导专家 2. (2011 昭通)如图所示, AECF 的对角线相交于点 O,DB 经过点 O,分别与 AE,CF 交 于 B,D. 求证:四边形 ABCD 是平行四边形.

3. (2011 徐州)如图,在四边形 ABCD 中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分 别为 E,F. (1)求证:△ ABE≌△CDF; (2)若 AC 与 BD 交于点 O,求证:AO=CO.

4. (2011 铜仁地区)已知:如图,在△ ABC 中,∠BAC=90° ,DE、DF 是△ ABC 的中位线, 连接 EF、AD.求证:EF=AD.

5. (2011 泸州)如图,已知 D 是△ ABC 的边 AB 上一点,CE∥AB, DE 交 AC 于点 O,且 OA=OC,猜想线段 CD 与线段 AE 的大小关系和位置关系, 并加以证明.

中小学 1 对 1 课外辅导专家 6. (2010 恩施州)如图,已知, ABCD 中,AE=CF,M、N 分别是 DE、BF 的中点. 求证:四边形 MFNE 是平行四边形.

7. (2009 永州)如图,平行四边形 ABCD,E、F 两点在对角线 BD

笔记(初中数学—平行四边形)

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

1.正方形具有而菱形不一定具有的特征有( )

初中数学—平行四边形

A.对角线互相垂直平分 B.内角和为360° C.对角线相等 D.对角线平分内角

2.平行四边形的一边长是10cm,那么它的两条对角线的长度可能是( ) A.8cm和12cm B.8cm和14cm C.6cm和10cm D.6cm和28cm 3.一个正方形的对角线长为2cm,则它的面积是( )

2222

A.2cm B.4cm C.6cm D.8cm

4.若矩形的一条对角线与一边的夹角是40°,?则两条对角线所夹的锐角的度数为( ) A.80° B.60° C.45° D.40°

5.已知菱形的周长为9.6cm,两个邻角的比是1:2,这个菱形较短的对角线的长是( ) A.2.1cm B.2.2cm C.2.3cm D.2.4cm

6.正方形ABCD内有一点E,且△ABE为等边三角形,则∠DCE为( ) A.15° B.18° C.22.5° D.30°

7.如图,在正方形ABCD中,CE=MN,∠BCE=40°,

平行四边形

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

19.2 平行四边形(第一课时)

教学目标:

知识与技能:

1、理解并掌握平行四边形的定义;

2、掌握平行四边形的性质定理1及性质定理2; 3、理解两条平行线的距离的概念; 4、培养学生综合运用知识的能力

过程与方法:经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理

的能力。

情感态度与价值观:培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际

应用价值。

重点、难点:

重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 难点:运用平行四边形的性质进行有关的论证和计算.

教具准备:图片、三角板 课时安排:一课时 教学过程:

一、导入新课

引入:

等,都是平行四边形,平行四边形有哪些性质呢?

什么是平行四边形? 平行四边形的定义:

(1)定义: 两组对边分别平行的四边形叫做平行四边形。

在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本

(2)几何语言表述 ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

(3)定义的双重性 具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”

平行四边形知识点与经典例题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第十八章 平行四边形

18.1.1 平行四边形的性质

第一课时 平行四边形的边、角特征 知识点梳理

1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。 知识点训练

1.(3分)如图,两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成一个四边形,这个四边形是________.

2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )

A.6个 B.7个 C.8个 D.9个

3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为 cm.

4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为 cm.

5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D= ;若∠A+∠C=140°,则∠D= .

6.(4分)(2014·福州)如图,在□ABCD中,DE平分∠ADC,AD

平行四边形复习讲义

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

中学1对1课外辅导专家

学科培训师辅导讲义

学员编号 学员姓名 课 题 备课时间 教学目标 重点、难点 年 级 辅导科目 七年级 数学 课时数 学科培训师 2 周老师 平行四边形复习讲义 2016年04月 14日 授课时间 2016年04月15日 掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法。 1.平行四边形、矩形、菱形、正方形性质及判定的应用 2.相关知识的综合应用 特殊平行四边形即矩形、菱形、正方形,它们是历年中考的必考内容之 一,主要出现的题型多样,注重考查学生的基础证明和计算能力,以及考点及考试要求 灵活运用数学思想方法解决问题的能力。内容主要包括:矩形、菱形、 正方形的性质与判定,以及相关计算,了解平行四边形与矩形、菱形、正方形之间的联系,掌握平行四边形是矩形、菱形、正方形的条件。 教学内容 (1) 演变关系: (2) 从属关系: 1

成功不是凭梦想和希望,而是凭努力和实践

平行四边形教学方案

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

平行四边形(一)

【教学内容】

  教科书第70页例1、例2、练习十九1,3,4。

【教学目标】

1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

5.了解平行四边形在生活中的应用。

【教学重、难点】

教学重点:认识平行四边形及其特征。

教学难点:自己探索、发现、描述、应用平行四边形的特征。

【教学准备】

教具:课件,长方形、三角形活动框,磁性小棒。

学具:三角板,量角器,直尺,平行四边形

纸片(4人小组相同),小棒4根(两两等长)。

【教学过程】

一、    导入新课

 

1.     目标导学。

(1)           什么是平行四边形?

(2) 平行四边形

平行四边形 较难 题库

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

勾股定理 ?难度一般2 题库

1.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为( ).

5533A.2 B.210 C.10 10 D.5 10

2.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,则第n个正方形的边长为( )

nn﹣1A.n B.(n﹣1)2 C.(2) D.(2)

3.如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝

22

隙).若①②③④四个平行四边形面积的和为14cm,四边形ABCD面积是11cm,则①②③④四个平行四边形周长的总和为( )

A.48cm B.36cm C.24cm D.18cm

4.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )

A. B.2 C.3 D.

5.如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点

试卷第1页,总25页

C与点O重合,折痕MN恰好

平行四边形中考集锦

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

中考集锦

20.(2013福建龙岩,20,10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的

两点,∠1=∠2.

(1)求证:AE=CF;

(2)求证:四边形EBFD是平行四边形.

【答案】(1)证明:

(法一)如图①:∵四边形ABCD是平行四边形,

∴AD=BC,AD // BC,∠3=∠4,

∵∠1=∠3+∠5,∠2=∠4+∠6,

∠1=∠2,

∴∠5=∠6,

∴△ADE ≌△CBF,

∴AE =CF;

图① 图②

(法二)如图②,连接BD交AC于点O,

在平行四边形ABCD中,

OA=OC,OB=OD,

∵∠1=∠2,∠7=∠8,

∴△BOF ≌△DOE,

∴OE=OF,

∴OA-OE =OC-OF,

即:AE=CF.

(2)证明:

(法一)如图①,

∵∠1=∠2,

∴DE // BF,

∵△ADE ≌△CBF,

∴DE=BF,

∴四边形EBFD是平行四边形.

(法二)如图②

∵OE=OF,OB=OD,

∴四边形EBFD是平行四边形.

15.(2013福建泉州,15,4分)如图,顺次连结四边形 ABCD 四边的中点 E、F、G、H,则四边形 EFGH 的形状一定是 .

【答案】 平行四边形

16.(2013福建泉州,16,4分) 如图,菱形ABCD

的周长为

《平行四边形》教学设计

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

《平行四边形及性质》

教学设计

博罗县罗浮中学 陈万意

《平行四边形及性质》教学设计

【教材】人教版义务教育课程标准实验教科书八年级下册19.1平行四边形的性质 【课时安排】共2课时 这是第1课时 【教学对象】八年级学生 【授课教师】陈万意 【教材分析】

四边形是现实生活中的常见图形,是平面几何中最基本的平面图形之一。本章的学习,既是前面所学的平行线、相交线,全等三角形,图形的平移、旋转、轴对称等知识的回顾与延伸,又是后续学习特殊的平行四边形、梯形、相似形等知识的基础 【学情分析】

首先,学生在小学四年级(下)的数学学习中,学生已经认识了平行四边形,知道了平行四边形的定义及面积公式,会用三角板等画平行四边形。在七年级和八年级上册的学习中,已为本章的学习做了铺垫,系统学习了平行线和相交线的有关几何知识,还学习了全等三角形的性质和判别方法、图形的平移、旋转、轴对称等知识。并在学习中积累了必要的探究活动、合作交流的经验。对几何图形的认识、图形的变换有了初步的认识,对转化思想也有一定的体验,为探究并掌握平行四边形的性质做了知识和经验准备。

同时,八年级的学生已经具备简单的几何推理能力,认知发展处于从合情推理阶段到演绎推理阶段的过渡,数学

人教版平行四边形测试

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

篇一:《平行四边形》章节测试(人教版)(参考答案)

八年级数学下学期第三章平行四边形

章节测试(人教版)参考答案

一、选择题

1.D

6.50

7.60° 2.C 3.C 4.C 5.B 二、填空题

18. 4

249. 5

10.①②④

三、解答题

11.证明略.

12.(1)证明略;

(2)当∠B=30°时,四边形ACEF是菱形.

13.(1)证明略.提示:由角平分线+平行线,可以得到OE=OC,OF=OC.

(2)当点O运动到AC中点时,四边形AECF是矩形,证明略.

14.(1)1或11;

(2)能成为菱形,当x的值为11时,以P,A,D,E为顶点的四边形是菱形,理由略.

篇二:《平行四边形》单元测试题-人教版

《平行四边形》单元测试题

一、填空题(每空2分,共28分)

,AB=14cm,

BC=16cm,则此平行四边形的周长为cm. 1.已知在

2.要说明一个四边形是菱形,可以先说明这个四边形是,再说明(只写一种方法) 3.如图,正方形ABCD的对线AC、BD相交于点O.,那么图中共有个等腰直角三角形. 4.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.

(1)正方形可以由两个能够完全重合的拼合而成;(2)菱形可以由两个能够完全重合的 拼合而成; (