数学建模实验报告非线性规划

“数学建模实验报告非线性规划”相关的资料有哪些?“数学建模实验报告非线性规划”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学建模实验报告非线性规划”相关范文大全或资料大全,欢迎大家分享。

数学建模 非线性规划(xin)

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

数学建模 非线性规划(xin)

非线性规划 (Nonlinear Programming)第一章 一般的非线性规划问题§1.1 问题概论

(模型) min s .t

f (x)

g i ( x ) 0, i 1,..., m h j ( x ) 0, j 1,..., n1

数学建模 非线性规划(xin)

(两类问题)无约束极值问题与约束极值问题

(一些基本定义)梯度

df df T f ( x) ( ,..., ) dx1 dxn

Hesse矩阵

H ( x)

f11 f m1

f1n f mn

Jaccobi矩阵

f1T F ( x ) f T n 2

数学建模 非线性规划(xin)

§ 1.2 最优解分类 (注:不一定存在)

定义1.2.1 整体(全局)最优解 定义1.2.2 局部最优解 (已有算法基本都是求局部 最优解的)§ 1.3 凸集与凸函数 定义1.3.1 凸集 定义1.3.2 (严格)凸函数 称定义在凸集K上的实值 ,有: 函数f (x)为凸函数,若 x1,x2 K及 01 f ( x1

数学建模实验报告3 线性规划与整数规划、

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

数学建模与实验课程 实验报告

实验名称 三、线性规划与整数规划 实验地点 日期 2014-10-28 姓名 班级 学号 成绩

【实验目的及意义】

[1] 学习最优化技术和基本原理,了解最优化问题的分类; [2] 掌握规划的建模技巧和求解方法; [3] 学习灵敏度分析问题的思维方法;

[4] 熟悉MATLAB软件求解规划模型的基本命令;

[5] 通过范例学习,熟悉建立规划模型的基本要素和求解方法。

通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令,并进行灵敏度分析。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。 【实验要求与任务】

根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型的求解(程序)—结论)

A组

高校资金投资问题

高校现有一笔资金10

线性规划实验报告

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

实验报告

实验内容及要求:

内容:某公司有四个农场,每个农场的耕地作物需要用水灌溉,因灌溉条件限制,农

场的最大水资源供应量有一定限制,各农场的总耕地面积与最大水资源供应量如表1-1所示。该地区适合种植的农作物有棉花、玉米和高粱,三种农作物每种作物每单位种植面积的净收入和耗水量以及每种作物最大允许种植面积如表1-2所示。由于水资源短,公司统一调配水资源,为了保持公正,规定每个农场受灌溉面积占农场总耕地面积的比例相同,公司管理层面临的决策问题还是如何确定各农场种植各种作物的面积,使得在满足以上各种限制的条件下,公司总收入最大。

表1-1

耕地面积(亩) 4000 6000 5000 4500 最大水资源供应量(吨) 农场 1 2 3 4

6000 9000 5500 5000

表1-2

作物 单位种植面积收入(元) 800 600 450 单位面积耗水量(吨) 2 1.5 1 最大允许种植面积(亩) 6000 5500 5000 棉花 玉米 高粱

实验过程分析:

要想得到该问题的最优解,我们将棉花标记为1,玉米标记为2,高粱标记为3.所以设置变量为:

棉花 玉米 高粱

农场1 X11 X12 X13 农场2 X21 X22

Matlab非线性规划

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

一般非线性规划

标准型为:

min F(X)

s.t AX<=b Aeq G(X)?0 ?X?beq Ceq(X)=0 VLB?X?VUB

其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步: 1. 首先建立M文件fun.m,定义目标函数F(X): function f=fun(X); f=F(X);

2. 若约束条件中有非线性约束:G(X)?0或Ceq(X)=0,则建立M文件

nonlcon.m定义函数G(X)与Ceq(X): function [G,Ceq]=nonlcon(X) G=... Ceq=... 3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:

(1) x=fmincon(‘fun’,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq)

(3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)

(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,

Matlab非线性规划应用

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

1 绪 论

1.1 课题的背景 1.1.1 Matlab简介

MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新

数学建模线性规划论文1

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

红十字会善款投资优化设计

摘要

作为慈善机构,某省红十字会为救助四川灾区患病儿童,打算将救灾的剩余善款存入银行或购买国库券,为了充分利用这笔善款,必须要做出合理的分配方案来提高每年的救助金额,并且保证在n年末仍保留原有善款数额,才能最大限度使用剩余善款。

为了给红十字会提供一种最优方案,本文本着为红十字会设计一种能最大限度使用善款存款本息且n年末仍保留原有善款数额的原则,以n年内用于存款或购买国库券的利息额之和的最大值为目标函数,运用线性规划的相关知识,并通过LINGO软件对模型进行求解,递出了一种符合题目要求的最优分配方案。

关键词:线性规划,LINGO软件

一、问题的重述

某省红十字会打算将四川特大地震后全国人民捐款救灾的剩余善款存入银行或购买国库券。

红十字会计划在n年内用此剩余善款的部分本息救助患病儿童,并使每年的救助金额大致相同,且在n年内仍保留原有善款数额。

通过设计最佳的使用方案,提高每年的救助金额,帮助红十字会在如下情况下,设计这笔剩余善款的使用方案,并对M?5000万元,n?10年给出具体结果。

(1) 只在银行存款而不购买国库券; (2) 既可存款也可以购买国库券;

(3) 红十字会在剩余的善款到位后的第三年要举行成

运筹学线性规划实验报告

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

《管理运筹学》实验报告

实验日期: 2016年 04月 21日 —— 2016 年 05 月 18 日 班级 2014级04班 姓名 杨艺玲 学号 实验 管理运筹学问题的计算机求解 名称 实验目的: 2014190456 通过实验学生应该熟练掌握“管理运筹学3.0”软件的使用,并能利用“管理运筹学3.0”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。 实验所用软件及版本: 管理运筹学3.0 实验过程:(含基本步骤及异常情况记录等) 一、实验步骤(以P31页 习题1 为例) 1.打开软件“管理运筹学3.0” 2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面

3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤” 、“≥”或“=”,如图二所示,最后点击解决

1

4.注意事项: (1) 输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。 (2) 输入前要合并同类项。 当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示

2

5.输出结果如下

5.课后习题: 一、P31习题1

数学建模案例之线性规划

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

线性规划

数学建模案例之线性规划 奶制品的生产与销售

2010.10

线性规划

引优化问题及其一般模型:

优化问题是人们在工程技术、经济管理和科学研究等领域中 最常遇到的问题之一。例如: 设计师要在满足强度要求等条件下选择材料的尺寸, 使 结构总重量最轻; 公司经理要根据生产成本和市场需求确定产品价格,使所获 利润最高; 调度人员要在满足物质需求和装载条件下安排从各供应点 到需求点的运量和路线,使运输总费用最低; 投资者要选择一些股票,债券下注,使收益最大,而风险最小 …………

线性规划

一般地,优化模型可以表述如下:

min z f ( x ) s.t . gi ( x ) 0 ,= 1, , i 2, m这是一个多元函数的条件极值问题,其中 x = [ x 1 , x 2 , … , x n ]。

许多实际问题归结出的这种优化模型,但是其决策变量个数 n 和约束条件个数 m 一般较大,并且最优解往往在可行域的边界上取得,这样就不 能简单地用微分法求解,数学规划就是解决这类问题的有效方法。

线性规划

引数学规划模型分类:

“数学规划是运筹学和管理科学中应用及其广泛的分支。在许多情况下, 应用数学规划取得的如此成功,以致它的用途

数学建模与数学实验 非线性迭代

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

目录

一、 实验解读 ........................................................................................................................... 1 二、 实验计划 ........................................................................................................................... 1

1. 迭代序列与不动点 ........................................................................................................... 1

1.1 程序 ....................................................................................................................... 1 1.2 实验思

运筹学实验2求解非线性规划

标签:文库时间:2025-01-30
【bwwdw.com - 博文网】

实验二 应用LINGO、MATLAB软件求解非线性规划

一.实验目的

1. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo对问题进行求解;

2. 学会建立M文件,并学会用Matlab的软件包内部函数求解非线性规划问题。

二.实验内容

1.写出下属问题的数学模型(LINGO)

将机床用来加工产品A,6小时可加工100箱。若用机床加工产品B,5小时可加工100箱。设产品A和产品B每箱占用生产场地分别是10和20个体积单位,而生产场地(包括仓库)允许15000个体积单位的存储量。机床每周加工时数不超过60小时。产品A生产x1(百箱)的收益为(60-5x1)x1元,产品B生产x2(百箱)的收益为(80-4x2)x2元,又由于收购部门的限制,产品A的生产量每周不能超过800箱,试制定周生产计划,使机床生产获最大收益。

2.用数学软件求解下列问题:(MATLAB) (1) minf??x1?2x2?x12?x22

minf??x1?2x2?s..t2x12?3x2?61212x1?x2221212(2)

x1?4x2?5x1,x2?0x1?3,x2?6

三. 模型建立

1、设生产A产品为x1百箱,生产B产品为x2