三角向量题目

“三角向量题目”相关的资料有哪些?“三角向量题目”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角向量题目”相关范文大全或资料大全,欢迎大家分享。

三角向量

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

南宁二中2009届数学备课组 第二轮复习专用资料

三角函数和平面向量专题复习

一.高考考试内容及要求:

1.三角函数考试要求:

(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.

(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,了解周期函数与最小正周期的意义;

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式; (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明;

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义;

(6)会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示;(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。 2. 平面向量考试要求:

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念; (2)掌握向量的加法和减法;

(3)掌握实数与向量的积,理解

三角向量

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

南宁二中2009届数学备课组 第二轮复习专用资料

三角函数和平面向量专题复习

一.高考考试内容及要求:

1.三角函数考试要求:

(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.

(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,了解周期函数与最小正周期的意义;

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式; (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明;

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义;

(6)会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示;(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。 2. 平面向量考试要求:

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念; (2)掌握向量的加法和减法;

(3)掌握实数与向量的积,理解

三角函数、三角变换、解三角形、平面向量

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

三角函数、三角变换、解三角形、平面向量

第一讲 三角函数的图象与性质

1.任意角的三角函数

y

(1)设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=. x(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2. 正弦、余弦、正切的图象及性质 函数 性质 定义域 y=sin x R y=cos x R y=tan x π{x|x≠kπ+,k∈Z} 2图象 值域 [-1,1] 对称轴:x=kπ+对称性 π2[-1,1] 对称轴:x= R ?kπ,0?(k∈Z) 对称中心:kπ(k∈Z);对称中心: ?2?(k∈Z);对称中心:π(kπ+,0)(k∈Z) 2(kπ,0)(k∈Z) 2π 2π 单调减区间 π3π[2kπ+,2kπ+] 22π 周期 单调性 单调增区间[2kπ-ππZ) ,2kπ+](k∈Z); (k∈22单调增区间 单调增区间 ππ(kπ-,kπ+)(k∈Z) 22[2kπ-π,2kπ]( k∈Z); 奇偶性 奇 偶 奇 3. y=Asin(ωx+φ)的图象及性质

π3π

(1)五点作图法:五点的取法:设X=ωx+φ,X取0,,π,,2π时求相应的

向量与三角交汇(学生)

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

平面向量与三角函数的交汇

1.(2013江苏T15)已知a=(cos ,sin ),b (cos ,sin ),0 .

(1)若|a b|

(2)设c (0,1),若a b c,求 , 的值. ,求证:a b; 2.(2012江苏T15)在 ABC中,已知AB AC 3BA BC.

(1)求证:tanB 3tanA (2

)若cosC

求A的值.

3. 设向量a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β,-4sin β).

(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值;

(3)若tan αtan β=16,求证:a∥b.

π4.已知向量a=(cos x,sin x),b=(-cos x,cos x),c=(-1,0).(1)若x=a与c6

π9π 的夹角;(2)当x∈ b+1的最大值,并求此时x的值. 2,8 时,求函数f(x)=2a·

5. 已知在锐角△ABC中,两向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),

且p与q是共线向量.

C-3B(1)求A的大小; (2)求函数y=

三角函数与平面向量

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

龙源期刊网 http://www.qikan.com.cn

三角函数与平面向量

作者:

来源:《数学金刊·高考版》2013年第03期

三角函数与平面向量交汇的试题屡见不鲜,颇为流行,呈现方式可大(解答题)可小(填空题和选择题). 若是小题,一般难度不大,主要考查基本概念和基本公式,是送分题;若是大题,则对基本公式的理解记忆能力、变形能力、运算能力等提出了一定的要求. ■

解答三角函数与平面向量交汇的试题时,一定要熟悉向量的数量积的定义和性质,合理选用向量数量积的运算法则构建相关等式,然后运用与此相关的三角函数知识点进行解题,并要注意方程思想的运用. ■

■ 已知向量a=(cosωx-sinωx,sinωx),b=(-cosωx-sinωx,2■·cosωx),设函数f(x)=a·b+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈■,1. (1)求函数f(x)的最小正周期;

(2)若已知y=f(x)的图象经过点■,0,求函数f(x)在区间0,■上的取值范围. 破解思路 先通过向量数量

专题二 三角函数、平面向量

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

第一讲 三角函数的图象与性质(选择、填空题型)

一、选择题

1.若f(cos x)=cos 2x,则f(sin 15°)=( ) 1133A.2 B.-2 C.-2 D.2

3π???πα?5

2.若sin(π-α)=-3且α∈?π,2?,则sin?2+2?=( )

????

6666

A.-3 B.-6 C.6 D.3

π

3.(2014·青岛模拟)函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<2的部

?ππ?

分图象如图所示,若x1,x2∈?-6,3?,且f(x1)=f(x2),则f(x1+x2)=

??

( )

123

A.1 B.2 C.2 D.2

π

4.(2014·江西师大附中模拟)为了得到函数y=3sin2x-6的图象,

π???只需把函数y=3sinx-6?上的所有的点的( ) ??

A.横坐标伸长到原来的2倍,纵坐标不变

1

B.横坐标缩短到原来的2倍,纵坐标不变

C.纵坐标伸长到原来的2倍,横坐标不变

1

D.纵坐标缩短到原来的2倍,横坐标不变

π??π

5.将函数f(x)=2sin?ωx-3?(ω>0)的图象向左平移3ω个单位,得

??

π??

到函数y=g(x)的图象.若y=g(x)在?0,4?上为增函

三角形四心向量形式

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

三角形“四心”向量形式的充要条件应用

在学习了《平面向量》一章的基础内容之后,学生们通过课堂例题以及课后习题陆续接触了有关三角形重心、垂心、外心、内心向量形式的充要条件。现归纳总结如下: 一. 知识点总结

1)O是?ABC的重心?OA?OB?OC?0 若O是?ABC的重心,则

S?BOC?S?AOC?S?AOB?1S?ABC3

故OA?OB?OC?0

2)O是?ABC的垂心?OA?OB?OB?OC?OC?OA 若O是?ABC(非直角三角形)的垂心,

tanB:tanC 则S?BOC:S?AOC:S?AOB?tanA:故tanAOA?tanBOB?tanCOC?0

3)O是?ABC的外心?|OA|?|OB|?|OC|(或OA?OB?OC) 若O是?ABC的外心

:sin?AOC:sin?AOB?sin2A:sin2B:sin2C 则S?BOC:S?AOC:S?AOB?sin?BOC222故sin2AOA?sin2BOB?sin2COC?0

4)O是内心?ABC的充要条件是

OA?(AB|AB|?ACAC)?OB?(BA|BA|?BC|BC|)?OC?(CA|CA|?CB|CB|)?0

引进单位向量,使条件变得更简洁。如果记AB,BC,CA

平面向量与三角形答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

A类平面向量

命题人 胡老师

→→→→→

1.(08·全国Ⅰ)在△ABC中,AB=c,AC=b,若点D满足BD=2DC,则AD=( ) 2152A.b+c B.c-b 33332112C.b-c D.b+c 3333[答案] A

→→→

2.已知O、A、M、B为平面上四点,且OM=λOB+(1-λ)OA,λ∈(1,2),则( ) A.点M在线段AB上 B.点B在线段AM上 C.点A在线段BM上 D.O、A、M、B四点共线 3.(理)已知a=(1,3),b=(1,1),c=a+λb,若a和c的夹角是锐角,则λ的取值范围是( )

5?-∞,-5? -,+∞? A.? B.2??2??

5

-,0?∪(0,+∞) C.{0} D.??2?

4.若|a|=2,|b|=2,且(a-b)⊥a,则a与b的夹角是 ( ) ππππA. B. C. D. 6432

5.(理)已知a=(m,n),b=(p,q),且m+n=5,p+q=3,则|a+b|的最小值为( ) A.4 B.42 C.6 D.8

6.半圆的直径AB=4,O为圆心,C是半

平面向量与三角形答案

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

A类平面向量

命题人 胡老师

→→→→→

1.(08·全国Ⅰ)在△ABC中,AB=c,AC=b,若点D满足BD=2DC,则AD=( ) 2152A.b+c B.c-b 33332112C.b-c D.b+c 3333[答案] A

→→→

2.已知O、A、M、B为平面上四点,且OM=λOB+(1-λ)OA,λ∈(1,2),则( ) A.点M在线段AB上 B.点B在线段AM上 C.点A在线段BM上 D.O、A、M、B四点共线 3.(理)已知a=(1,3),b=(1,1),c=a+λb,若a和c的夹角是锐角,则λ的取值范围是( )

5?-∞,-5? -,+∞? A.? B.2??2??

5

-,0?∪(0,+∞) C.{0} D.??2?

4.若|a|=2,|b|=2,且(a-b)⊥a,则a与b的夹角是 ( ) ππππA. B. C. D. 6432

5.(理)已知a=(m,n),b=(p,q),且m+n=5,p+q=3,则|a+b|的最小值为( ) A.4 B.42 C.6 D.8

6.半圆的直径AB=4,O为圆心,C是半

第三讲 三角函数与平面向量

标签:文库时间:2024-11-06
【bwwdw.com - 博文网】

2013级假期辅导讲义 罗荣恒

第七讲 三角函数与平面向量

1、角的定义:

?正角:按逆时针方向旋转形成的角??任意角?负角:按顺时针方向旋转形成的角???零角:不作任何旋转形成的角

2、角?的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称?为第几象限角。

第一象限角的集合为??2k????2k??,k???

?2????第二象限角的集合为??2k?????2k???,k???

?2????第三象限角的集合为??2k??????2k????3??,k??? 2?第四象限角的集合为??2k????3?????2k??2?,k??? 2?终边在x轴上的角的集合为????k?,k??? 终边在y轴上的角的集合为????k??,k???

?2????终边在坐标轴上的角的集合为??????k??,k??? 2?3、与角?终边相同的角的集合为????2k???,k???4、已知?是第几象限角,确定

?*

n???所在象限的方法: ?n先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,

则?原来是第几象限对应的标号即为

?n终边所落在的区域。

5、长度等于半径长的弧所对的圆心角叫做1弧度