时间序列数据

“时间序列数据”相关的资料有哪些?“时间序列数据”相关的范文有哪些?怎么写?下面是小编为您精心整理的“时间序列数据”相关范文大全或资料大全,欢迎大家分享。

横截面数据、时间序列数据、面板数据

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

横截面数据、时间序列数据、面板数据

横截面数据:(时间固定)

横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。 如:

时间序列数据:(横坐标为t,纵坐标为y)

在不同时间点上收集到的数据,这类数据反映某一事物、现象等随时间的变化状态或程度。 如:

面板数据:(横坐标为t,斜坐标为y,纵坐标为z)

是截面数据与时间序列数据综合起来的一种数据类型。其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排

在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。 举例:

如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。 如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点

横截面数据、时间序列数据、面板数据

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

横截面数据、时间序列数据、面板数据

横截面数据:(时间固定)

横截面数据是在同一时间,不同统计单位相同统计指标组成的数据列。横截面数据是按照统计单位排列的。因此,横截面数据不要求统计对象及其范围相同,但要求统计的时间相同。也就是说必须是同一时间截面上的数据。 如:

时间序列数据:(横坐标为t,纵坐标为y)

在不同时间点上收集到的数据,这类数据反映某一事物、现象等随时间的变化状态或程度。 如:

面板数据:(横坐标为t,斜坐标为y,纵坐标为z)

是截面数据与时间序列数据综合起来的一种数据类型。其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排

在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作“面板数据”。 举例:

如:城市名:北京、上海、重庆、天津的GDP分别为10、11、9、8(单位亿元)。这就是截面数据,在一个时间点处切开,看各个城市的不同就是截面数据。 如:2000、2001、2002、2003、2004各年的北京市GDP分别为8、9、10、11、12(单位亿元)。这就是时间序列,选一个城市,看各个样本时间点

时间序列测验3解答 北师珠 时间序列

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

时间序列分析 教案

第5、6章 测试题

1. 时间序列{xt}的d阶差分实质上是一个d阶自回归过程, 则?xt?(1?B)xt?

ddii(?1)C?dxt?i ; i?0d2. 假设线性非平稳序列{xt}形如:xt?1?2t?at,

其中E(at)?0,Var(at)??2,Cov(at,at-1)?0,?t?1,

则?xt?xt?xt?1?2?at?at?1,?2xt??xt??xt?1?at?2at?1?at?2; 并说明为何说?2xt为过差分?

因为1阶和2阶差分后,序列均平稳,但Var(?xt)?Var(at?at?1)?2?2, 而Var(?2xt)?Var(at?2at?1?at?2)?6?,2阶差分后的方差大,过差分。 2

?1??1B)?xt?((1??1B??2B2)?t?3. 形如:?E(?t)?0,Var(?t)???2,E(?t?s)?0,s?t的模型,

?Ex??0,?s?t?st简记为 ARIMA(1,1,2) 模型,并说明此模型的平稳性。 此为不平稳模型。

4. 模型ARIMA(0,1,0)称为 随机游走 模型, 其序列的方差 Var(xt)?Var(x0??t??t?

时间序列测验2解答 北师珠 时间序列

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

时间序列分析 教案

测试2 解答 (第三、四章)

-11. 设{xt}为一时间序列,且?xt?xt?xt-1,?pxt??p( ?xt),?kxt?xt?xt-k,2?? 。 Bxt?xt-1,记?(??(B)xt, 则?(B)3?xt)2?(1?B3)(1?B)解:根据k步差分和p阶差分与延迟算子之间的关系,得?(B)。

2. 已知AR(1)模型为:xt?0.7xt-1??t,?t~WN(0,??2)。 求: E(xt),Var(xt),?2和?22。

解:(1) 由平稳序列E(xt)?E(xt-1)和E(?t)?0,得E(xt)?0 或 ???01??1????p?0 P. 47 (??0?0)(2) Var(xt)?0.72Var(xt?1)?Var(?t)?0.49Var(xt)???2

1?0.490.51k(3) AR(1)模型?k??1(k?0),?2??12?0.72?0.49 P. 50 (4) AR(1)模型偏自相关系数截尾: ?22?0 P. 54-55。

3. 分别用特征根判别法和平稳域判别法检验下列四个AR模型的平稳性。

时间序列二

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

应用时间序列分析

实 验 报 告 二

学生姓名 张亚平 学 号 20091315030 院 系 数学与统计学院 专 业 统计学 指导教师 尚林

二O一二年三月三十日

应用时间序列分析第二次实验报告

实验题目1

18 某地区连续74年的谷物产量(单位:千吨)如表3-21所示(具体数据见课本102页表-21)

(1)判断该序列的平稳性与纯随机性。 (2)选择适当模型拟合该序列的发展。

(3)利用拟合模型,预测该地区未来5年的谷物产量。 实验步骤1

(1) 根据题目所给数据得到了样本的自相关序列图,和纯随机性检验结果如下所示。

样本自相关图显示延迟3阶以后,自相关系数都落在2倍标准差范围内,而且样本自相关系数向零衰减的速度非常快,延迟6阶以后自相关系数即在零值附近波动,这是一个典型的短期相关的样本自相关图。由时序图和样本自相关图的性质可知该序列平稳。

由纯随机性检验结果可知,在各阶延迟下LB检验统计量的P值都非常小,所以我们可以认定该序列属于非白噪声序列。

(2) 为了找到合适的模型来拟合模型的发展,首先进行相对最优定阶得到结果如下。

计量经济学--时间序列数据分析

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

时间序列数据的计量分析方法

1.时间序列平稳性问题及处理方案

1.1序列平稳性的定义

从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h个时期,那么其联合概率分布仍然保持不变。

平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。 1.2不平稳序列的后果

可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。

1.3平稳性检验方法:ADF检验 1.3.1ADF检验的假设:

?辅助回归方程:Yt????Yt?1??t????Yii?1t?i??t(是否有截距和时间趋势项

在做检验时要做选择)

原假设:H0:p=0,存在单位根

备择假设:H1:P<0,不存在单位根

结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。

1.3.2实例

对1978年2008年的中国GDP数据进行ADF检验,结果如表一。

表一 ADF检验结果

Augmented Dickey-Fuller test statistic t-Statistic Prob.*

计量经济学--时间序列数据分析

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

时间序列数据的计量分析方法

1.时间序列平稳性问题及处理方案

1.1序列平稳性的定义

从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h个时期,那么其联合概率分布仍然保持不变。

平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。 1.2不平稳序列的后果

可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。

1.3平稳性检验方法:ADF检验 1.3.1ADF检验的假设:

?辅助回归方程:Yt????Yt?1??t????Yii?1t?i??t(是否有截距和时间趋势项

在做检验时要做选择)

原假设:H0:p=0,存在单位根

备择假设:H1:P<0,不存在单位根

结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。

1.3.2实例

对1978年2008年的中国GDP数据进行ADF检验,结果如表一。

表一 ADF检验结果

Augmented Dickey-Fuller test statistic t-Statistic Prob.*

计量经济学--时间序列数据分析

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

时间序列数据的计量分析方法

1.时间序列平稳性问题及处理方案

1.1序列平稳性的定义

从平稳时间序列中任取一个随机变量集,并把这个序列向前移动h个时期,那么其联合概率分布仍然保持不变。

平稳时间序列要求所有序列间任何相邻两项之间的相关关系有相同的性质。 1.2不平稳序列的后果

可能两个变量本身不存在关系而仅仅因为有相似的时间趋势而得出它有关系,也就是出现伪回归;破坏回归分析的假设条件,使得回归结果和各种检验结果不可信。

1.3平稳性检验方法:ADF检验 1.3.1ADF检验的假设:

?辅助回归方程:Yt????Yt?1??t????Yii?1t?i??t(是否有截距和时间趋势项

在做检验时要做选择)

原假设:H0:p=0,存在单位根

备择假设:H1:P<0,不存在单位根

结果识别方法:ADF Test Statistic 值小于显著性水平的临界值,或者P值小于显著性水平则拒绝原假设并得出结论:所检测序列不存在单位根,即序列是平稳序列。

1.3.2实例

对1978年2008年的中国GDP数据进行ADF检验,结果如表一。

表一 ADF检验结果

Augmented Dickey-Fuller test statistic t-Statistic Prob.*

时间序列课程作业

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

时间序列分析课程大作业

专业: 学号: 姓名:

江苏省第三产业生产总值的研究—基于ARIMA模型分析

【摘要】

本论文分析江苏省第三产业生产总值数据,利用金融统计方法来建立模型,对江苏省经济进行分析和预测。首先,根据1978-2011年江苏省第三产业生产总值的数据绘制时间序列图,观察序列特征。然后,通过自然对数变换将近似指数上升的数据转化为近似直线上升的数据,在单位根检验的基础上结合样本自相关系数和样本偏相关系数的特征初步建立合适的ARIMA模型,并对建立的模型进行白噪声检验和参数的T检验。最后,根据T检验、白噪声检验的结果,结合AIC信息准则对模型进行优选,并根据最终确定的模型对2012-2017年江苏省第三产业生产总值进行预测,从而对江苏省经济的分析和预测。 一、引言:

近几年来,江苏省作为我国经济大省,经济发展面临着前所未有的机遇和挑战。随着科技和文化的发展,第三产业对经济发展的贡献和作用越来越大。加快发展第三产业,有利于江苏省经济结构调整和产业升级,有利于推进其现代化进程,有利于扩大就业和提高人民生活质量。对全省经济发展的局部协调和宏观调控,都不能忽视第三产业在经济发展中所起的作用。因此,研究江苏省第三产业生产总值数据,通过建立合适的

《时间序列分析》讲义

标签:文库时间:2025-02-14
【bwwdw.com - 博文网】

第1章 差分方程和滞后算子

第一节 差分方程

一.一阶差分方程

假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:

yt??yt?1?w (1)

则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:

mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct

wt?0.27?0.19It?0.045rbt?0.019rct

其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到

012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即

yt??t?1y?1??tw0??t?1w1?....?wt (3)

这个过程称为差分方程的