时间序列分析课程总结

“时间序列分析课程总结”相关的资料有哪些?“时间序列分析课程总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“时间序列分析课程总结”相关范文大全或资料大全,欢迎大家分享。

时间序列课程作业

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

时间序列分析课程大作业

专业: 学号: 姓名:

江苏省第三产业生产总值的研究—基于ARIMA模型分析

【摘要】

本论文分析江苏省第三产业生产总值数据,利用金融统计方法来建立模型,对江苏省经济进行分析和预测。首先,根据1978-2011年江苏省第三产业生产总值的数据绘制时间序列图,观察序列特征。然后,通过自然对数变换将近似指数上升的数据转化为近似直线上升的数据,在单位根检验的基础上结合样本自相关系数和样本偏相关系数的特征初步建立合适的ARIMA模型,并对建立的模型进行白噪声检验和参数的T检验。最后,根据T检验、白噪声检验的结果,结合AIC信息准则对模型进行优选,并根据最终确定的模型对2012-2017年江苏省第三产业生产总值进行预测,从而对江苏省经济的分析和预测。 一、引言:

近几年来,江苏省作为我国经济大省,经济发展面临着前所未有的机遇和挑战。随着科技和文化的发展,第三产业对经济发展的贡献和作用越来越大。加快发展第三产业,有利于江苏省经济结构调整和产业升级,有利于推进其现代化进程,有利于扩大就业和提高人民生活质量。对全省经济发展的局部协调和宏观调控,都不能忽视第三产业在经济发展中所起的作用。因此,研究江苏省第三产业生产总值数据,通过建立合适的

《时间序列分析》(双语)课程教学大纲

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

《时间序列分析》(双语)课程教学大纲

(2001年制订,2004年修订)

课程编号:060063 英 文 名: Time Series Analysis 课程类别: 统计学专业选修课

前 置 课: 线性代数、概率论与数理统计、计算机基础 后 置 课: 学 分: 2学分

课 时: 36课时(其中实验课12课时) 主讲教师: 王芳

选定教材:易丹辉 ,数据分析与Eviews应用,北京:中国统计出版社,2002 自编英文讲义 课程概述:

时间序列分析是一门实用性极强的课程,是进行科学研究的一项重要工具。近年来,时序分析已普遍应用于工农业生产、科学技术和社会经济生活的许多领域。本课程着重介绍平稳时间序列数据的分析、建模及预测,如AR,MA和ARMA三个模型,并且针对非平稳时间序列,介绍其平稳化的一些方法及建模方法,如ARIMA模型等。 教学目的:

本课程的教学,目的在于让学生能从数量上揭示某一现象的发展变化规律或从动态的角度刻划某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界之目的。具体来说是使得学生能分析时间序列的统计规律性,构造拟合它的最佳数学模型,浓缩时间序列的信息,

应用时间序列分析课程论文剖析

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

应用时间序列分析课程论文

班级:13应用统计1班 学号:20133695 姓名:彭鹏

学习了本学期的应用时间序列分析课程内容,学习了使用EVIEWS软件对平稳时间序列的平稳性进行分析,学习平稳时间序列模型的建立、学会根据自相关系数和偏自相关系数判断ARMA模型的阶数p和q,学会利用信息准则对估计的ARMA模型进行诊断,以及掌握利用ARMA模型进行预测。

在统计研究中,有大量的数据是按照时间顺序排列的,用数学方法来表述就是使用一组随机序列表示随机事件的时间序列即为{Xt} 通常的ARMR建模过程,B-J方法具体步骤如下:

一、 对时间序列进行特性分析。从随机性、平稳性、季节性考虑。

对于一个非平稳时间序列,若要建模首先将其平稳化,其方法有三种:

1差分,一些序列可以通过差分使其平稳化。

2季节差分,如果序列具有周期波动特点,为了消除周期波动的影响,通常引用季节差分。

3函数变换与差分结合运用,某些序列如果具有某类函数趋势,我们可以先引入某种函数变换将序列转化为线性趋势,然后再进行差分以消除线性趋势。

二、 模型识别与建立。模型识别和模型定阶。 三、 模型的评价,并利用模型进行评价。

下面从网上搜寻数据,1949-2014年城镇人口数(单位万人

应用时间序列分析课程论文剖析

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

应用时间序列分析课程论文

班级:13应用统计1班 学号:20133695 姓名:彭鹏

学习了本学期的应用时间序列分析课程内容,学习了使用EVIEWS软件对平稳时间序列的平稳性进行分析,学习平稳时间序列模型的建立、学会根据自相关系数和偏自相关系数判断ARMA模型的阶数p和q,学会利用信息准则对估计的ARMA模型进行诊断,以及掌握利用ARMA模型进行预测。

在统计研究中,有大量的数据是按照时间顺序排列的,用数学方法来表述就是使用一组随机序列表示随机事件的时间序列即为{Xt} 通常的ARMR建模过程,B-J方法具体步骤如下:

一、 对时间序列进行特性分析。从随机性、平稳性、季节性考虑。

对于一个非平稳时间序列,若要建模首先将其平稳化,其方法有三种:

1差分,一些序列可以通过差分使其平稳化。

2季节差分,如果序列具有周期波动特点,为了消除周期波动的影响,通常引用季节差分。

3函数变换与差分结合运用,某些序列如果具有某类函数趋势,我们可以先引入某种函数变换将序列转化为线性趋势,然后再进行差分以消除线性趋势。

二、 模型识别与建立。模型识别和模型定阶。 三、 模型的评价,并利用模型进行评价。

下面从网上搜寻数据,1949-2014年城镇人口数(单位万人

时间序列课程设计

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

《应用时间序列分析》

课程设计指导书

一、课程设计的目的

熟练 Minitab等常用统计软件的应用,对软件处理后的数据和结论进行分析,加深理解本课程的研究方法,将书本知识应用于实践之中,培养自身解决实际问题的能力。

二、设计名称:

某城市过去63年终每年降雪量数据构成的时间序列进行平稳性检验、

模型拟合并预测五年内增长数据进行预测

三、设计要求:

1. 掌握用统计软件实现平稳时间序列平稳性检验、模型拟合并预测的方法和步骤

2.充分利用应用时间序列分析,决实际问题。 3. 数据来源必须真实,并独立完整

四、设计过程

1. 思考课程设计的目的,上网收集来源真实的数据; 2. 整理数据,简单分析数据间关系变化;

3. 利用Minitab数据进行详细分析,并得出相关数值; 4. 编辑实验报告,详细记录操作步骤和相关数据说明; 5. 结合相关的实验结论与知识背景,对于实验的出的结论提出自己的建议与意见。

五、设计细则:

1.对于网上搜集到的数据文件必须真是可靠,自己不得随意修改; 2.利用统计软件的数据分析功能充分处理数据,得出正确的结论; 3.认真编写实验报告,对于实验中的操作步骤应尽量详细; 4.实验分析结果要与实际问题背景相符合。

六、说明

《时间序列分析》讲义

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第1章 差分方程和滞后算子

第一节 差分方程

一.一阶差分方程

假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:

yt??yt?1?w (1)

则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:

mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct

wt?0.27?0.19It?0.045rbt?0.019rct

其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到

012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即

yt??t?1y?1??tw0??t?1w1?....?wt (3)

这个过程称为差分方程的

时间序列建模分析

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

时间序列建模分析 及EVIEWS应用

1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

目录1、ARIMA模型1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例

2、季节时间序列模型2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

1、ARIMA模型 1.1 模型的适用条件与构建过程 1.2 EVIEWS操作简单说明 1.3 模型构建实例2、季节时间序列模型 2.1 确定性季节时间序列模型 2.2 随机性季节时间序列模型

时间序列的预处理:拿到一个时间序列后,首先要对它的平 稳性和纯随机性进行检

《时间序列分析》讲义

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

1 第1章 差分方程和滞后算子

第一节 差分方程

一.一阶差分方程

假定t 期的y (输出变量)和另一个变量w (输入变量)和前一期的y 之间存在如下动态方程:

1t t y y w φ-=+ (1)

则此方程为一阶线性差分方程,这里假定w 为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:

10.270.720.190.0450.019t t t bt ct m m I r r -=++--

0.270.190.0450.019t t bt ct w I r r =+--

其中t m 为货币量,t I 为真实收入,bt r 为银行账户利率,ct r 为商业票据利率。

1)用递归替代法解差分方程

根据方程(1),可以得到

010********

1

2

t t t

y y w y y w y y w t y y w φφφφ--=+=+=+=+

(2) 如果我们知道1t =-期的初始值1y -和w 的各期值,则可以通过动态系统得到任何一个时期的值。即

11101....t t t t t y y w w w φφφ+--=++++

《时间序列分析》讲义

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第1章 差分方程和滞后算子

第一节 差分方程

一.一阶差分方程

假定t期的y(输出变量)和另一个变量w(输入变量)和前一期的y之间存在如下动态方程:

yt??yt?1?w (1)

则此方程为一阶线性差分方程,这里假定w为一个确定性的数值序列。差分方程就是关于一个变量与它的前期值之间关系的表达式。一阶差分方程的典型应用为美国货币需求函数:

mt?0.27?0.72mt?1?0.19It?0.045rbt?0.019rct

wt?0.27?0.19It?0.045rbt?0.019rct

其中mt为货币量,It为真实收入,rbt为银行账户利率,rct为商业票据利率。 1)用递归替代法解差分方程 根据方程(1),可以得到

012?ty0??y?1?w0y1??y0?w1y2??y1?w2 (2) ?yt??yt?1?wt如果我们知道t??1期的初始值y?1和w的各期值,则可以通过动态系统得到任何一个时期的值。即

yt??t?1y?1??tw0??t?1w1?....?wt (3)

这个过程称为差分方程的

传统时间序列分析

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第九章 传统时间序列分析

时间序列的变动主要是由长期趋势、循环波动、季节变动及不规则变动而形成的,其中前三种变动有一个共同的特点,就是依一定的规则而变化,不规则变动则在综合中可以消除。基于这种认识,本章主要是介绍设法消除不规则变动,拟合确定型趋势,因而形成了一系列确定型时间序列分析方法。

实验一 季节模型

实验目的:

掌握季节调整的方法。 实验内容:

对时间序列进行季节调整。 知识准备:

经济时间序列的变化受许多因素的影响,概括地讲,可以将影响时间序列变化的因素分为四种,即长期趋势(T,随着时间的变化,按照某种规律稳步地增长、下降或保持在某一水平上)、季节变动因素(S,在一个年度内依一定周期规则性变化)、周期变动因素(C,以若干年为周期的波动变化)和不规则变动因素(I,许多不可控的偶然因素共同作用的结果)。传统时间序列分析应是设法消除不规则变动,指拟合确定性趋势,因而形成了长期趋势分析、季节变动分析和循环波动测定等一系列确定型时间序列分析方法。

季节变动是一种较为普遍的现象,其按照一定的周期循环进行,而且每个周期变化强度大体一致。研究季节变动的目的在于了解季节变动的规律,并进行季节预测。分析季节变动的方法有很多,其中常用的方法有两类:一是不考