吉林大学离散数学期末试题
“吉林大学离散数学期末试题”相关的资料有哪些?“吉林大学离散数学期末试题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“吉林大学离散数学期末试题”相关范文大全或资料大全,欢迎大家分享。
吉林大学2008级离散数学II试题(A)
一、简答题(共50分)
1. (4分)设集合G={a,b,c},试定义G上的“· ”运算,使得(G,·)构成一个群(给出运算表)。并指出(G,·)中的单位元和每个元素的逆元素。 2. (2分)n(n>1)元有限群中,一共存在多少个幂等元?
3. (2分)设?=(1 3 2 4),?=(1 3 4),请把??写成若干对换乘积的形式。 4. (2分)设G是3次对称群,H={I, (2 3)}是G的子群,求H的所有左陪集。 5. (2分)在4次对称群中,请写出由(1 3 4)生成的子群。
6. (2分)设S={1, 2, 3, 4, 5,6},?是模7乘法运算,请指出群(S, ?)中每个元素的逆元素。
7. (2分)设群G中的元素a的周期为8,则a6的周期是多少? 8. (2分)写出模12剩余环中所有的零因子。
9. (2分)在整数环Z中,包含主理想(21)的极大理想有哪些? 10. (2分)若子群H在群G中指数是2,则H一定是G的正规子群吗? 11. (2分)在12元循环群(a)中,求子群(a3)的所有陪集。
12. (2分)设G是由a生成的6元循环群,设σ(n)=an是整数加法群(Z,+)到G内的映射,则σ是同态映射吗?如果是,求出σ的同态核。
离散数学(大作业)-吉林大学
2014-2015学年第二学期期末《离散数学》大作业
一、简要回答下列问题:(每小题3分,共30分)
1.请给出集合运算的等幂率。 答:等幂律 A?A=A,A?A=A
2.请给出一个集合A,并给出A上既具有对称性,又具有反对称性的关系。 答:设A={1,2,3}, R={(1,1),(2,2),(3,3)} 既对称又反对称。
3.设A={1,2,3},问全域关系是否具有自反性,对称性 ? 答:是,全域关系具有自反性、对称性
4.设A={1,2,3,4,5,6},R是A上的整除关系,M={4,3},求M的上界,下界。 答:上界 无 下界 1
5.关于P,Q,R请给出使极小项m1,m7为真的解释。
答:P=0,Q=0,R=1, ?P∧?Q∧R,记为m1 取1值,为真; P=1,Q=1,R=1,P∧Q∧R 记为m7 取1值,为真。
6.什么是图中的回路,请举一例。
设G=(P,L)是图,(v0 ,v1, …, vn)是G中从v0 到vn的路,称此路为简单路,如果 (1) v0 , …, vn-1互不相同 (2) v1 , …, vn互不相同
显然,一条简单路(v0 ,v1, …, vn),除v0与 vn可以相同外,其他任意
吉林大学离散数学课后习题答案
第二章 命题逻辑
§2.2 主要解题方法
2.2.1 证明命题公式恒真或恒假
主要有如下方法:
方法一. 真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每
18
一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。
真值表法比较烦琐,但只要认真仔细,不会出错。
例2.2.1 说明 G= (P?Q?R)?(P?Q)?(P?R)是恒真、恒假还是可满足。
解:该公式的真值表如下:
P Q R P?QP?(P?QP?R G ?R Q ?R)?(P?Q) 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 表2.2.1
由于表2.2.1中对应公式G所在列的每一取值全为1,故
19
1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 G恒真。
方法二. 以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。
例2.2.2
离散数学期末复习
离散数学期末复习
一、选择题 1、
下列各选项错误的是
A、? ? ? B、? ? ? C、? ?{ ?} D、? ? {? }
2、命题公式 (p∧q) →p 是 A、矛盾式 B、重言式 C、可满足式 D、等值式
3、如果是R是A上的偏序关系,R-1是R的逆关系,则R∪R-1是
A、等价关系 B、偏序关系 C、全序关系 D、都不是
4、下列句子中那个是假命题? A、
是无理数.
B、2 + 5 =8.
C、x + 5 > 3 D、请不要讲话! 5、下列各选项错误的是? A、? ? ? B、? ? {? } C、? ?{ ?} D、{? } ? ?
6、命题公式 p→(p?q?r)是? A、重言式 B、矛盾式 C、可满足式 D、等值式
7、函数f : N→N, f(x)=x+5,函数f是 A、单射 B、满射 C、双射 D、都不是
8、设D= D、不连通的 9、关系R1和R2具有反自反性,下面运算后,不能保持自反性的是 A、R1 ?R2 B、R1-1 C、R1 ?R2 D、R1 -R2 10、连通平面图G有4个
离散数学期末复习
离散数学
一、填空20%(每空2分):
1.若对命题P赋值1,Q赋值0,则命题P?Q的真值为 。 2.命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为 3.公式?(P?Q)?(P??(Q??S))的对偶公式为
4.图 的对偶图为
5.若关系R是等价关系,则R满足 性质。 6.关系R的传递闭包t (R) = 。 7.代数系统?A,??是群,则它满足 8.设?A,?,??和?B,?,??是两代数系统,f是从?A,?,??到?B,?,??的同态映射,则f具有 性质。
离散数学期末复习总要
离散数学期末复习各个章节要点纲要(及定理)
离散数学定义定理
1.3.1命题演算的合式公式规定为: (1)单个命题变元本身是一个合式公式。 (2)如果A是合式公式,那么┐A是合式公式。
(3)如果A和B是合式公式,那么(A∨B)、(A∧B)、(A→B)、(A?B)、都是合式公式。 (4)当且仅当有限次地应用(1)(2)(3)所得到的包含命题变元,连接词和圆括号的符号串是合式公式。
1.3.2 设Ai是公式A的一部分,且Ai是一个合式公式,称Ai是A的子公式。
1.3.3 设P为一命题公式,P1,P2,……,Pn为出现在P中的所有命题变元,对P1,P2,……,Pn指定一组真值称为对P的一种指派。若指定的一种指派,使P的值为真,则称这组指派为成真指派。若指定的一种指派,使P的值为假,则称这种指派为成假指派。 含n个命题变元的命题公式,共有2n个指派。
1.3.4 给定两个命题公式A和B,设P1,P2,……,Pn为所有出现于A和B中的原子变元,若给P1,P2,……,Pn任一组真值指派,A和B的真值都相同,称A和B是等价的,记做A <=>B。
1.3.5 设A为一命题公式,若A在它的各种指派情况下,其取值均为真,则称A为重言式或永真式。 1.3.6
离散数学期末试卷
《离散数学》期末考试试卷(A卷)
--------------------------------------------------------------------------------------------------------------------------------------------------- 03.A?{?,{a},{b},{a,b}}上的包含关系为?,则子集C?{{a},{b}}的极大元为
____,极小元为____,上界为____,下界为____,最大元为___, 最小元为___(若没有填无)。 04.设A?{a,b},则A上共有___个不同的等价关系。
05.有一个函数f:X?Y,若要使f有逆函数,f就必须是___。
三、演算题(每小题10分,总30分)
年级 专业 姓名 学号 座位号
大登
一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题干后的括号内。每题3分,共18分) 01.下列语句中,真命题是( )
A、我正在说谎; B、若1?2?3,则雪是黑的; C、这句话
吉林大学2009级计算机学院《离散数学II》试题(A)
一、简答题(共20小题,每小题2分,共40分,不必证明,直接给出答案即可)
1. 设S={a,b,c,d},定义ρ(S)上的二元运算“-”,使对于任意A、B ρ(S),A-B={x|x A且x B},问:该运算满足消去律吗?ρ(S)上存在幂等元吗?
2. 所有的4元群都同构吗?所有的7元群都同构吗?
3. 整区中是否存在零因子?整区中所有非零元素的乘法周期都相等吗?
4. 设循环群G=(a),|G|=24,则G中是否存在周期为5的元素?是否存在8元子群?
5. 设a GF(27)且a≠0,求6a和a26。
6. 在R13求2
4-4。
7. 设(G,·)是群,请给出满足方程a·b·x·c =1的解x,其中:1是G的单位元,a、b、c G。
8. 设G={e,a,b,c,d,f,g},(G,·)是群,e是G的单位元,计算a·b·c·d·f·g等于多少?
9. 设循环群G=(a),H是G子群,则H是正规子群吗?
10. 写出模12剩余环的一个极大理想。
11. 域F上的非0多项式f(x)有k(k为非负整数)重根,则f(x)一定可约吗?
12. 给出多项式x5+5x4+2x3
吉林大学2009级计算机学院《离散数学II》试题(A)
一、简答题(共20小题,每小题2分,共40分,不必证明,直接给出答案即可)
1. 设S={a,b,c,d},定义ρ(S)上的二元运算“-”,使对于任意A、B?ρ(S),A-B={x|x?A且x?B},问:该运算满足消去律吗?ρ(S)上存在幂等元吗? 2. 所有的4元群都同构吗?所有的7元群都同构吗?
3. 整区中是否存在零因子?整区中所有非零元素的乘法周期都相等吗?
4. 设循环群G=(a),|G|=24,则G中是否存在周期为5的元素?是否存在8元子群?
5. 设a?GF(27)且a≠0,求6a和a26。 6. 在R13求
24-4。
7. 设(G,·)是群,请给出满足方程a·b·x·c =1的解x,其中:1是G的单位元,a、b、c?G。
8. 设G={e,a,b,c,d,f,g},(G,·)是群,e是G的单位元,计算a·b·c·d·f·g等于多少?
9. 设循环群G=(a),H是G子群,则H是正规子群吗? 10. 写出模12剩余环的一个极大理想。
11. 域F上的非0多项式f(x)有k(k为非负整数)重根,则f(x)一定可约吗? 12. 给出多项式x5+5x4+2x3+3x+1的一个有理根。
13. 在R2上给出两个多项式f(x)和g(x),
离散数学期末复习题
离散数学期末复习题
一、选择题
1、永真式的否定是(2) (2) 永假式
2、设P:2×2=5,Q:雪是黑的,R:2×4=8,S:太阳从东方升起,则下列真命题为(1) (1)P?Q?R
3、设P:我听课,Q:我看小说,则命题R“我不能一边听课,一边看小说”的符号化为⑵ ⑵P??Q(3)
提示:R??(P?Q)?P??Q 4、下列表达式错误的有⑷ ⑷P?(?P?Q)?P?Q 5、下列表达式正确的有⑷ ⑷?(P?Q)??Q
6、下列联接词运算不可交换的是(3) (3)?
6、设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y,则命题“有的人喜欢所有的花”的逻辑符号化为⑷ ⑷?x(M(x)??y(F(y)?H(x,y))
7、设L(x):x是演员,J(x):x是老师,A(x , y):x钦佩y,命题“所有演员都钦佩某些
老
师”的逻辑符号化为⑵
⑵?x(L(x)??y(J(y)?A(x,y)))
8、谓词公式?x(P(x)??yR(y))?Q(x)中的 x是⑶ ⑶既是自由变元又是约束变元 9、下列表达式错误的有⑴
⑴?x(A(x)?B(x))??xA(x)??xB(x)