矩阵分解的应用
“矩阵分解的应用”相关的资料有哪些?“矩阵分解的应用”相关的范文有哪些?怎么写?下面是小编为您精心整理的“矩阵分解的应用”相关范文大全或资料大全,欢迎大家分享。
矩阵分解
矩阵分解
在矩阵运算中,把矩阵分解成形式比较简单或具有某种特性的一些矩阵的乘积,在矩阵理论的研究和应用中,具有重要的意义。一方面,矩阵分解能够明显反映出原矩阵的某些数值特征,如矩阵的秩、行列式、特征值及奇异值等,令一方面分解的方法与过程往往提供了某些有效地数值计算方法和理论分析根据。常见的矩阵分解方法有:三角分解、QR分解、满秩分解、奇异值分解。下面将主要从这四个方面进行分别介绍。
一、三角分解
定义: 设A?Cnn?n,如果存在下三角矩阵L?Cnn?n和上三角矩阵R?Cnn?n,使得
A?LR (1) 则成A可以作三角分解。
A可以作三角分解的充分必要条件是A的k阶顺序主子式。 ?k?detAk?0(k?1,2,?n?1),而Ak为A的k阶顺序主子式(证明略)
如果A可以分解成A?LR,其中L是对角元素为1的下三角矩阵(称为单位下三角矩阵),R是上三角矩阵,则称之为A的Doolittle分解;L是下三角矩阵,R为对角元素为1的上三角矩阵,则称之为A的Crout分解。
如果A可以分解为A?LDR,其中L为单位下三角矩阵,D为对角
矩阵,R为单位上三
矩阵分解
矩阵分解
在矩阵运算中,把矩阵分解成形式比较简单或具有某种特性的一些矩阵的乘积,在矩阵理论的研究和应用中,具有重要的意义。一方面,矩阵分解能够明显反映出原矩阵的某些数值特征,如矩阵的秩、行列式、特征值及奇异值等,令一方面分解的方法与过程往往提供了某些有效地数值计算方法和理论分析根据。常见的矩阵分解方法有:三角分解、QR分解、满秩分解、奇异值分解。下面将主要从这四个方面进行分别介绍。
一、三角分解
定义: 设A?Cnn?n,如果存在下三角矩阵L?Cnn?n和上三角矩阵R?Cnn?n,使得
A?LR (1) 则成A可以作三角分解。
A可以作三角分解的充分必要条件是A的k阶顺序主子式。 ?k?detAk?0(k?1,2,?n?1),而Ak为A的k阶顺序主子式(证明略)
如果A可以分解成A?LR,其中L是对角元素为1的下三角矩阵(称为单位下三角矩阵),R是上三角矩阵,则称之为A的Doolittle分解;L是下三角矩阵,R为对角元素为1的上三角矩阵,则称之为A的Crout分解。
如果A可以分解为A?LDR,其中L为单位下三角矩阵,D为对角
矩阵,R为单位上三
第6讲 矩阵分解
第6讲 矩阵分解
内容:1. 矩阵的三角分解
2. 矩阵的满秩分解 3. 矩阵的QR分解 4. 矩阵的Schur定理
5. 矩阵的谱分解和奇异值分解
矩阵分解指将一个矩阵写成结构比较简单的或性质比较熟悉的另一些矩阵的乘积.它在控制理论和系统分析等领域有广泛应用.
§1 矩阵的三角分解
定义1.1 称A?(aij)n?n?a11?0??????0a12?a1n?a22?a2n??为上三角矩阵,?????0?ann?B?AT为下三角矩阵.特别地,称A(或AT)的对角元素为1
的上(下)三角矩阵为单位上(下)三角矩阵.三角矩阵是一类特殊的矩阵,具有特殊的性质. 1.Gauss消元法
?a11?1?a12?2???a1n?n?b1?a??a????a??b2112222n12n元线性方程组? ,其矩阵形式 ?????an1?1?an2?2???ann?n?bn Ax?b,
其中:A?(aij)n?n?a11?a??21????an1a12a22?an2?a1n??a2n??,x???,?,?,??T,b??b,b,?,b?T. 12n12n?????ann?采用按自然顺序选主元素进行消元.假定化A为上三角矩阵的过程未用到行和列交换,
matlab中矩阵LDLT分解与Cholesky分解
矩阵LDLT分解与Cholesky分解:
求矩阵A???ij?20?20的LDLT分解与Cholesky分解,其中
i,i?j??ij??。mini(j,)-i2?,j?矩阵的LDLT消去函数的程序代码:
%矩阵的LDLT分解
function [s,l,d]=ldlt(a) s=1;l=0;d=0;
%判断矩阵是否对称
if a~=a' %矩阵不对称,输出错误信息 s=0; else
b=diag(a); %列向量b存放矩阵a的对角元素,矩阵D的元素也放在该向量 n=size(a,1); %矩阵a维数n for k=1:n
b(k)=b(k)-(a(k,1:k-1).^2)*b(1:k-1);
if ~b(k) %如果矩阵D的对角元素出现0,出现错误,停止计算 s=0; break
else %进行递推
a(k+1:n,k)=(a(k+1:n,k)-a(k+1:n,1:k-1)*(b(1:k-1).*a(k,1:k-1)'))/b(k);
酉矩阵和正交矩阵的性质和应用
正交矩阵与酉矩阵的性质和应用
0 前 言.......................................................................................................................... 1 1 欧式空间和正交矩阵................................................................................................ 2
1.1 欧式空间.......................................................................................................... 2 1.2 正交矩阵的定义和性质.................................................................................. 2
1.2.1 正交矩阵的定义和判定....................................
分块矩阵的几个重要应用
分块矩阵的几个重要应用
数学学院 数学与应用数学(师范)专业 2008级 鄢光兵
指导教师
摘要:
矩阵是高等代数中的一个重要概念,也是高等数学很多分支研究问题的工具。而把一个比较大的矩阵分成若干子块,构成分块矩阵是处理矩阵问题的重要技巧。分块矩阵思想来源于对矩阵运算复杂度及存储空间的考虑。特别当矩阵太大不适合存储在计算机内存中的时候,通过分块矩阵允许计算机每次只处理存储在内存中几个子矩阵,支持向量传输结构的向量计算机能够更加高效地运行支持分块矩阵的矩阵算法。分块矩阵可以降低矩阵的阶数,使矩阵更加条理清晰,使得矩阵的相关运算简单化,并使矩阵证明方面的相关问题得以便捷的解决。本文重点就分块矩阵的定义、分块方法、基本运算,行列式和求逆矩阵的计算,以及关于矩阵的秩的方面的证明问题进行了分析。使用了大量的例题说明了分块矩阵的技巧可以使高等代数中的很多计算与证明问题简单化。所以了解分析并掌握分块矩阵的性质与应用及相关的技巧是非常必要的。
关键词:矩阵;分块矩阵;子矩阵;
Abstract: Matrix is an important concept in high algebra, but also an instrument for res
矩阵的对角化及其应用
学院2016届
本科毕业论文(设计)
矩阵的对角化及其应用
学生姓名: 学 号:
专 业: 数学与应用数学 指导老师: 答辩时间: 2016.5.22 装订时间: 2016.5.25
A Graduation Thesis (Project)
Submitted to School of Science, Hubei University for Nationalities
In Partial Fulfillment of the Requiring for BS Degree
In the Year of 2016
Diagonalization of the Matrix and its Applications
Student Name Student No.:
Specialty: Mathematics and Applied Mathematics Supervisor:
Date of Thesis Defense:2016.5.22 Date of Bookbinding: 201
分块矩阵的几个重要应用
分块矩阵的几个重要应用
数学学院 数学与应用数学(师范)专业 2008级 鄢光兵
指导教师
摘要:
矩阵是高等代数中的一个重要概念,也是高等数学很多分支研究问题的工具。而把一个比较大的矩阵分成若干子块,构成分块矩阵是处理矩阵问题的重要技巧。分块矩阵思想来源于对矩阵运算复杂度及存储空间的考虑。特别当矩阵太大不适合存储在计算机内存中的时候,通过分块矩阵允许计算机每次只处理存储在内存中几个子矩阵,支持向量传输结构的向量计算机能够更加高效地运行支持分块矩阵的矩阵算法。分块矩阵可以降低矩阵的阶数,使矩阵更加条理清晰,使得矩阵的相关运算简单化,并使矩阵证明方面的相关问题得以便捷的解决。本文重点就分块矩阵的定义、分块方法、基本运算,行列式和求逆矩阵的计算,以及关于矩阵的秩的方面的证明问题进行了分析。使用了大量的例题说明了分块矩阵的技巧可以使高等代数中的很多计算与证明问题简单化。所以了解分析并掌握分块矩阵的性质与应用及相关的技巧是非常必要的。
关键词:矩阵;分块矩阵;子矩阵;
Abstract: Matrix is an important concept in high algebra, but also an instrument for res
分块矩阵的几个重要应用
分块矩阵的几个重要应用
数学学院 数学与应用数学(师范)专业 2008级 鄢光兵
指导教师
摘要:
矩阵是高等代数中的一个重要概念,也是高等数学很多分支研究问题的工具。而把一个比较大的矩阵分成若干子块,构成分块矩阵是处理矩阵问题的重要技巧。分块矩阵思想来源于对矩阵运算复杂度及存储空间的考虑。特别当矩阵太大不适合存储在计算机内存中的时候,通过分块矩阵允许计算机每次只处理存储在内存中几个子矩阵,支持向量传输结构的向量计算机能够更加高效地运行支持分块矩阵的矩阵算法。分块矩阵可以降低矩阵的阶数,使矩阵更加条理清晰,使得矩阵的相关运算简单化,并使矩阵证明方面的相关问题得以便捷的解决。本文重点就分块矩阵的定义、分块方法、基本运算,行列式和求逆矩阵的计算,以及关于矩阵的秩的方面的证明问题进行了分析。使用了大量的例题说明了分块矩阵的技巧可以使高等代数中的很多计算与证明问题简单化。所以了解分析并掌握分块矩阵的性质与应用及相关的技巧是非常必要的。
关键词:矩阵;分块矩阵;子矩阵;
Abstract: Matrix is an important concept in high algebra, but also an instrument for res
矩阵迹的性质与应用
安庆师范学院数学与计算科学学院2013届毕业论文
矩阵迹的若干个性质与应用
姓名:某某 指导老师:某某
摘 要:根据矩阵迹的定义,首先给出了矩阵迹的性质,然后依据方阵的F?范数定义Cauchy —Schwarz
不等式,给出了零矩阵,不相似矩阵,数幂矩阵,列矩阵,幂等矩阵及矩阵不等式的证法。矩阵的迹在解题中的应用给出了实例。
关键词:迹 矩阵 范数 特征值
1 引言
矩阵的迹及其应用是高等数学的重要内容,也是工程理论研究中的重要工具。本文在前人研究的基础上,首先介绍了矩阵迹的相关性质,然后给出了零矩阵,不相似矩阵,数幂矩阵,列矩阵,幂等矩阵及矩阵不等式的证法,最后对矩阵的应用给出实例。
2 预备知识
定义1 设
A?(aij)?Cn?n,则trA??aii称为A 的迹。
i?1n定义2 设
nnA?(aij)?Cn?n,记与向量范数AX2相容的A 的F 一范数为: 212AF?(??aij)
i?1j?1(1)A?0?AF?0
(2) KAF?K?AF,?K?C(3) A?B(4) AB(5) AXF
?AF?BF,?A,B?Cn
F?AF?BF,?A,B?Cn?n ?AF2?X2
引理:矩阵迹的性质: 1