二元线性回归Spss解读

“二元线性回归Spss解读”相关的资料有哪些?“二元线性回归Spss解读”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二元线性回归Spss解读”相关范文大全或资料大全,欢迎大家分享。

利用SPSS进行logistic回归分析(二元、多项)

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。 二值logistic回归:

选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。把你的自变量选到协变量的框框里边。

细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚

一元线性回归spss作业

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

一元线性回归实验指导

一、 使用spss进行线性回归相关计算

题目:

为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)

1. 绘制散点图描述收入与广告支出的关系

结果:(散点图粘贴在下面)

从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系

2. 计算两个变量的相关系数r及其检验

相关性结果表格:(粘贴在下面)

从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。

3. 一元线性回归分析

计算回归分析;并输出标准化残差的pp图和直方图 分析输出的结果: 模型汇总表格:(粘贴在下面)

这个表格给出相关系数R=()以及标准估计的误差()

方差分析(ANOVA)表格:(粘贴在下面)

这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p值(),说明回归的线性关系(显著/不显著)

系数表格:(粘贴在下面)

上面这个表格

一元线性回归spss作业

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

一元线性回归实验指导

一、 使用spss进行线性回归相关计算

题目:

为研究医药企业销售收入与广告支出的关系,随机抽取了20家医药企业,得到它们的销售收入和广告支出的数据如下表(数据在‘广告.sav’中)

1. 绘制散点图描述收入与广告支出的关系

结果:(散点图粘贴在下面)

从散点图可直观看出销售收入和广告支出(存在/不存在)线性关系

2. 计算两个变量的相关系数r及其检验

相关性结果表格:(粘贴在下面)

从结果中可看出,销售收入与广告支出的相关系数为(),双侧检验的P值(),r在0.01显著性水平下(),表明销售收入与广告支出之间(存在/不存在)线性关系。

3. 一元线性回归分析

计算回归分析;并输出标准化残差的pp图和直方图 分析输出的结果: 模型汇总表格:(粘贴在下面)

这个表格给出相关系数R=()以及标准估计的误差()

方差分析(ANOVA)表格:(粘贴在下面)

这个表格给出回归模型的方差分析表,包括回归平方和SSR、回归均方MSR、残差平方和SSE、残差均方MSE、总平方和SST和总均方MST,F值129.762以及P值(),此处p值(),说明回归的线性关系(显著/不显著)

系数表格:(粘贴在下面)

上面这个表格

SPSS—回归—多元线性回归结果分析(二)

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

SPSS—回归—多元线性回归结果分析(二) 2011-10-27 14:44

,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。

接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示: 结果分析1:

由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands\ 建立了模型1,紧随其后的是“Wheelbase\ 建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等 0.1时,从“线性模型中”剔除

结果分析:

1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些 (0.422>0.300)

2:从“Anova\可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和= 回归平方和+残差平方和,由于

如何用spss17.0进行二元和多元logistic回归分析

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

如何用spss17.0进行二元和多元logistic回归分析

一、二元logistic回归分析

二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。

下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。

(一)数据准备和SPSS选项设置

第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。

图 1-1

第二步:打开“二值Logistic 回归分析”对话框:

沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic(Binary Logistic)”的路径(图1-2)打开二值Logis

相关分析和一元线性回归分析SPSS报告

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

用下面的数据做相关分析和一元线性回归分析:

选用普通高等学校毕业生数和高等学校发表科技论文数量做相关分析和一元线性回归分析。

一、相关分析

1.作散点图

普通高等学校毕业生数和高等学校发表科技论文数量的相关图

从散点图可以看出:普通高等学校毕业生数和高等学校发表科技论文数量的相关性很大。

2.求普通高等学校毕业生数和高等学校发表科技论文数量的相关系数

把要求的两个相关变量移至变量中,因为都是定距数据,选择相关系数中的Pearson,点击确定,可以得到下面的结果:

Correlations

普通高等学校毕业生数(万人) 高等学校发表科技论文数量(篇)

普通高等学校毕业生数(万人) Pearson Correlation 1 .998**

Sig. (2-tailed) .000

N 14 14

高等学校发表科技论文数量(篇) Pearson Correlation .998** 1 Sig. (2-tailed) .000

N 14 14

**. Correlation is significant at the 0.01 level (2-tailed).

两相关变量的Pearson相关系数=0.0998,表示呈高度正相关;相关系数检验对应的概率P 值=0.000

二元logistic逻辑回归分析2

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

logistic模型方法的运用分析

一. 《基于logistic模型的失地农民土地征收意愿影响因素研究。》

1. 构建模型:,文中因变量的量化取值,当农户愿意土地被征收时,取值1,当农户不愿意

土地被征收时,取值0。

2. 变量描述及赋值:采用李克特5分量表法进行赋值,对与征地意愿有正向作用的因素从

非常同意到非常不同意分别赋值5、4、3、2、1,对负向作用的因素从非常同意到非常不同意分别赋值1、2、3、4、5;而家庭人口特征和区位特征则采取实际量化值。

3.结果分析: 3.1模型检验

模型系数检验:似然比卡方检验的观测值48.460,概率p值为0.000,小于0.05,说明模型整体显著。

-2对数似然值检验:-2倍的对数似然函数值为105.111,说明模型拟合度较理。 R Square检验:R方值越大模型越优。NagelkerkeR2值为0.384,说明模型拟合度较好。 Overall Percentage : 观察Overall Percentage值,如果为92.4%,说明回归后模型总预测正确率为92.4%,与步骤0的90.8%比,提高1.6%,说明模型预测效果较理想。 变量的显著性检验:显著性水平的值代表变量对模型显著影响的大小。

是x1

实验二 一元线性回归模型

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

实验二 一元线性回归模型

【实验目的】

掌握一元线性回归模型的建模方法。 【实验内容】

一、我国税收预测模型;

二、建立中国城镇居民消费函数。 【实验步骤】

(以我国税收预测模型为例)

一、启动EViews软件:

进入Windows/双击Eviews快捷方式,进入EViews窗口,或点击开始/程序/Econometrics Views,进入EViews窗口。

二、建立工作文件: 键入CREATE A 85 97 三、输入数据

1.键入命令:DATA Y X

2.输入每个变量的统计数据。 四、图形分析:

1.趋势图:PLOT Y X 2.相关图:SCAT X Y 五、估计线性回归模型: 命令方式 LS Y C X

六、建立城镇居民消费模型(以菜单方式) 1.建立工作文件:

⑴点击File╲New╲Workfile(将弹出一个工作文件对话框); ⑵选择undated or irregular(非时序数据,数据个数选8) 点击OK。

2.输入数据:

⑴键入命令:DATA Y X

⑵输入每个变量的统计数据。 3.图形分析:

⑴趋势图:PLOT Y X ⑵相关图:SCAT X Y 4.估计线性回归模型: 菜单方式

⑴点击Qu

第二章 一元线性回归模型

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

第二章 一元线性回归模型

1.中国居民人均消费模型

从总体上考察中国居民收入与消费支出的关系。表2.1给出了1990年不变价格测算的中国人均国内生产总值(GDPP)与以居民消费价格指数(1990年为100)所见的人均居民消费支出(CONSP)两组数据。

表2.1 中国居民人均消费支出与人均GDP (单位:元/

1) 建立模型,并分析结果。

输出结果为:

对应的模型表达式为:

CONSP 201.107 0.3862GDPP

(13.51) (53.47) R2 0.9927,F 2859.23,DW 0.55

从回归估计的结果可以看出,拟合度较好,截距项和斜率项系数均通过了t检验。 中国人均消费增加10000元,GDP增加3862元。

1. 线性回归模型估计

表2.2给出黑龙江省伊春林区1999年16个林业局的年木材采伐量和相应伐木剩余物数据。利用该数据(1)画散点图;(2)进行OLS回归;(3)预测。

表2.2 年剩余物yt和年木材采伐量xt数据

林业局名 乌伊岭 东风 新青 红星 五营 上甘岭 友好 翠峦 乌马河 美溪 大丰 南岔

年木材剩余物yt(万m3) 年木材采伐量xt(万m3)

26.13

23.49 21.97 11.53 7.18

上海房价影响因素SPSS多元线性回归分析

标签:文库时间:2025-01-29
【bwwdw.com - 博文网】

上海房价影响因素的多元线性回归分析

1:研究目的和意义

我国房地产市场从20世纪90年代开始建立到如今已经颇具规模,对我国的经济增长产生了很大的影响,甚至成为了国民经济的支柱型产业。但是近年来,房价的飞速发展又不得不引起我们的重视,在促进经济增长的同时,带来的一系列结构性问题将对房地产行业的健康发展甚至国民经济的可持续发展带来影响。因此研究商品房价格的影响因素,有助于科学的把握房地产市场的发展规律,对整个国民经济都具有很大的意义。

2:研究内容和方法

本文主要以上海为中国房地产市场的代表城市进行分析,通过对1999年至2007年的相关经济数据整理建立起多元线性回归模型。

从理论上来讲,房价的波动主要受宏观经济影响,包括地区生产总值,城镇人均可支配收入,建设成本,城市人口密度,货币政策,土地价格以及房地产开发投资额等指标。这里主要选取商品房平均售价作为因变量,城镇人均可支配收入,城市人口密度,以及房地产开发投资额作为自变量来进行分析,通过多元回归方法来了解商品房价格的影响因素

3:多元回归模型的建立及数据分析 3.1:多元线性回归模型的建立

表一:上海1999~2007年相关经济数据

数据来源:上海统计年鉴 国研网整理

设定三个自变量指标分别为:城镇人均可支配