锐角的三角函数教学反思

“锐角的三角函数教学反思”相关的资料有哪些?“锐角的三角函数教学反思”相关的范文有哪些?怎么写?下面是小编为您精心整理的“锐角的三角函数教学反思”相关范文大全或资料大全,欢迎大家分享。

《圆与锐角三角函数》教学反思

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

《圆与锐角三角函数》教学反思

武汉市第二十一(警予)中学 张鲜花

摘要:初三的第二轮复习课以专题范例为主,目标主体明确,教学设计必须针

对性强,以期有效解决学生暴露的疑难问题,增强他们在具体题型上的解题能力。如何克服学习数学的倦怠与为难情绪,如何总结出规律性的解题技巧是教学设计不容忽视的问题。课堂模式的改变,教学流程的优化可以开辟一条复习课的新路子,值得探索,也有必要反思。

关键词:复习课 针对性 课堂模式 生本 幸福 反思

很多学生认为数学是一门很枯燥乏味的学科。为了改变学生这种想法,我的数学课以多种形式展现给学生。有时我加入一个与内容相关的小故事进去;有时在上课前创设一个问题情境增加悬念,吊一吊学生的胃口,而学生最喜欢的数学课是——“我的课堂,我做主”。“我的课堂,我做主”就是给学生展示自我的一个机会,给他们一个舞台,让学生自己主动上台讲我事先布置预习的数学题。往往是同学们争先恐后要充当老师角色讲题 ,一题多解就从学生的解题交流中挖掘出来的。

这学期的公开课的内容是四月调考前第一轮复习中“圆与锐角三角函数”。为什么选择这个内容呢?原因是普通班学生在几何这一块得分向来不是很多,几何是他们较薄弱

《圆与锐角三角函数》教学反思

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

《圆与锐角三角函数》教学反思

武汉市第二十一(警予)中学 张鲜花

摘要:初三的第二轮复习课以专题范例为主,目标主体明确,教学设计必须针

对性强,以期有效解决学生暴露的疑难问题,增强他们在具体题型上的解题能力。如何克服学习数学的倦怠与为难情绪,如何总结出规律性的解题技巧是教学设计不容忽视的问题。课堂模式的改变,教学流程的优化可以开辟一条复习课的新路子,值得探索,也有必要反思。

关键词:复习课 针对性 课堂模式 生本 幸福 反思

很多学生认为数学是一门很枯燥乏味的学科。为了改变学生这种想法,我的数学课以多种形式展现给学生。有时我加入一个与内容相关的小故事进去;有时在上课前创设一个问题情境增加悬念,吊一吊学生的胃口,而学生最喜欢的数学课是——“我的课堂,我做主”。“我的课堂,我做主”就是给学生展示自我的一个机会,给他们一个舞台,让学生自己主动上台讲我事先布置预习的数学题。往往是同学们争先恐后要充当老师角色讲题 ,一题多解就从学生的解题交流中挖掘出来的。

这学期的公开课的内容是四月调考前第一轮复习中“圆与锐角三角函数”。为什么选择这个内容呢?原因是普通班学生在几何这一块得分向来不是很多,几何是他们较薄弱

锐角三角函数

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

龙文学校 教师一对一

www.lwgxh.com龙文学校个性化辅导资料 启迪思维,点拨方法,开发潜能,直线提分!

第28章:锐角三角函数

一、基础知识

1.定义:如图在△ABC中,∠C为直角,

我们把锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA;sinA= sinA?a c把锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA;cosA?b ca b把锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA 。tanA?把锐角∠A的邻边与对边的比叫做∠A的余切,记作cosA。cosA?2、三角函数值

(1)特殊角的三角函数值 角度 0° 三角函数 sinA 0 30° 45° 60° 90° 1 b a1 23 23 32 23 2cosA 1 12 221 0 tanA 0 3 不存在 (2)锐角三角函数值的性质。 锐角三角函数的大小比较:

在0??A?90?时,随着A的增大,正弦值越来越大,而余弦值越来越小. 即:sinA是增函数,cosA减函数。

1锐角三角函数值都是正数。 ○

2当角度在090间变化时:正弦、正切值随着角度的增大而增大;余弦、余切随着角度的增大而减小。 ○

3、 同角、互余角的

24.1锐角的三角函数

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

25.1 锐角三角函数

教学内容

本节课主要运用类比的方法得到正弦和余弦的概念,并且学习它们的应用. 教学目标

1.知识与技能.

理解锐角三角函数中的正弦、余弦的概念,并能够举例说明.

2.过程与方法. 经历探索正弦、余弦概念的过程,掌握运用sinA、cosA表示直角边的比. 3.情感、态度与价值观.

培养良好的数形结合的能力,体会三角函数在现实生活中的应用价值. 重难点、关键

1.重点:理解正弦、余弦的概念.

[来源:学科网ZXXK]

2.难点:怎样运用已学过的正余切,以及正余弦概念解决实际问题. 3.关键:要注意正切、余切、正弦、余弦的特性,把握应用的方法. 教学准备

1.教师准备:投影仪、制作投影片. 2.学生准备:复习上一节课内容,预习本节课内容. 教学过程

一、回顾交流,迁移导入 1.专题讨论.(投影显示) 问题牵引1:下图是两个不同商场的自动扶梯,依据图形数据探讨下列问题. (1)哪一个自动扶梯陡?为什么?

(2)甲、乙两个自动扶梯的倾斜程度是通过什么数学公式计算的?

(3)如图(甲),当Rt△ABC中的锐角∠ABC确

24.1锐角的三角函数

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

25.1 锐角三角函数

教学内容

本节课主要运用类比的方法得到正弦和余弦的概念,并且学习它们的应用. 教学目标

1.知识与技能.

理解锐角三角函数中的正弦、余弦的概念,并能够举例说明.

2.过程与方法. 经历探索正弦、余弦概念的过程,掌握运用sinA、cosA表示直角边的比. 3.情感、态度与价值观.

培养良好的数形结合的能力,体会三角函数在现实生活中的应用价值. 重难点、关键

1.重点:理解正弦、余弦的概念.

[来源:学科网ZXXK]

2.难点:怎样运用已学过的正余切,以及正余弦概念解决实际问题. 3.关键:要注意正切、余切、正弦、余弦的特性,把握应用的方法. 教学准备

1.教师准备:投影仪、制作投影片. 2.学生准备:复习上一节课内容,预习本节课内容. 教学过程

一、回顾交流,迁移导入 1.专题讨论.(投影显示) 问题牵引1:下图是两个不同商场的自动扶梯,依据图形数据探讨下列问题. (1)哪一个自动扶梯陡?为什么?

(2)甲、乙两个自动扶梯的倾斜程度是通过什么数学公式计算的?

(3)如图(甲),当Rt△ABC中的锐角∠ABC确

锐角三角函数的应用教学设计

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

锐角三角函数的应用(教学设计)

乾县长留初中张莉

教学目标:将已知元素和未知元素归结为直角三角形中元素之间的关

系,运用直角三角形的有关知识(如三角函数等)解决问题。

过程与方法:经历把某些实际问题中量与量之间的关系转变成数学模

型中量与量的关系,进一步培养学生的建模能力,在解决问题的过程中体会“数形结合”的思想方法。

情感与态度:感悟数学来源于生活,应用于生活的真理,培养实际操

作能力和建构能力关注每一位学生参与数学活动的程度,自信心,使每位学生体验到成功的快乐。

一.知识回顾:

直角三角形的边角关系:

1)两锐角关系:———————— 2)三边之间的关系:—————————— 3)边角之间的关系——————————— 二.问题解决

问题一:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:1.73)

问题二:如图所示,再一次课外实践活动中,同学们要测量某公园人工湖两侧A、B两个凉亭之间的距离,现测得AC=30m,BC=70m,∠CAB=120°,请计算A、B两个凉亭之间的距离

锐角三角函数测试

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

锐角三角函数 单元测试

1.cos60 的值等于( )

A.

21

B.

22

C.

2

D.1

2.在Rt△ABC 中, ∠C=90 ,AB=4,AC=1,则tanA的值是( )

1

A

B. C

D.4

4

3.已知 为锐角,且sin( 10 )

3,则等于( )

2

A.50 B.60 C.70 D.80

4.已知直角三角形ABC中,斜边AB的长为m, B 40,则直角边BC的长是( )

A.msin40 B.mcos40

C.mtan40

D.

m

tan40

5.在Rt△ABC中, C 90

,BC

,AC A ( )

A.90 B.60 C.45 D.30

6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)位于她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是( )

A.250m. B. 250.3 m. C.500.33 m. D.3 m.

7.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE的值是( )

锐角三角函数测试

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

锐角三角函数 单元测试

1.cos60 的值等于( )

A.

21

B.

22

C.

2

D.1

2.在Rt△ABC 中, ∠C=90 ,AB=4,AC=1,则tanA的值是( )

1

A

B. C

D.4

4

3.已知 为锐角,且sin( 10 )

3,则等于( )

2

A.50 B.60 C.70 D.80

4.已知直角三角形ABC中,斜边AB的长为m, B 40,则直角边BC的长是( )

A.msin40 B.mcos40

C.mtan40

D.

m

tan40

5.在Rt△ABC中, C 90

,BC

,AC A ( )

A.90 B.60 C.45 D.30

6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)位于她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是( )

A.250m. B. 250.3 m. C.500.33 m. D.3 m.

7.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE的值是( )

锐角三角函数(培优)

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

知识要点

1、 锐角三角函数定义

斜边的对边αα∠=sin 斜边的邻边αα∠=cos

的邻边的对边ααα∠∠=tan 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300、450、600、的记忆规律:

3、 角度变化与锐角三角函数的关系

当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。

4、 同角三角函数之间有哪些关系式

平方关系:sin 2A +cos 2A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tanB =1;

5、 互为余角的三角函数有哪些关系式

Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900-A )=ctan A ;

一、选择题

1.在Rt △ABC 中,∠C =900,∠A =∠B ,则sinA 的值是( ).A .21 B .22 C .2

3 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A .21 B .3

3 C .1 D .3 3.在Rt △ABC 中,如果各边的长度

1.1.1锐角三角函数

标签:文库时间:2024-12-16
【bwwdw.com - 博文网】

甘州区金安苑学校九年级数学(下)导学案 九年级数学备课组

§1.1.1锐角三角函数

主备人:杨天学 审核人:阮嘉东 学科组审核: 教导处审核: 【教学目标】

1.经历探索直角三角形中边的比值和角大小关系的过程;理解正切三角函数的意义和与现实生活的联系.

2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算. 【教学重点】

1.从现实情境中探索直角三角形的边角关系.

2.理解正切、倾斜程度、坡度的数学意义,并能进行简单的计算. 【教学难点】

理解正切的意义,并用它来表示两边的比. 【教学过程】 一、自主预习

1.用多媒体演示如下内容:

梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?

(1)甲组中EF和AB哪组梯子比较陡,乙图中AB和EF哪组梯子较陡.

乙组 (2)如图,梯子AB和EF哪个更陡?你是怎样判断的?

甲组

二、自主探究,合作交流

1.(1)如图:图中的三角形均为直角三角形,这些