头脑风暴法解决问题的案例
“头脑风暴法解决问题的案例”相关的资料有哪些?“头脑风暴法解决问题的案例”相关的范文有哪些?怎么写?下面是小编为您精心整理的“头脑风暴法解决问题的案例”相关范文大全或资料大全,欢迎大家分享。
头脑风暴法案例大全
篇一:运用“头脑风暴法”的一个有趣的案例
精益咨询,TPM咨询,人才培养与发展,标杆考察调研,找广州精弘益企管。
头脑风暴法的操作程序为:
1.准备阶段。
CI策划与设计的负责人应事先对所议问题进行一定的研究,弄清问题的实质,找到问题的关键,设定解决问题所要达到的目标。同时选定参加会议人员,一般以5 ̄10人为宜,不宜太多。然后将会议的时间、地点、所要解决的问题、可供参考的资料和设想、需要达到的目标等事宜一并提前通知与会人员,让大家做好充分的准备。
2.热身阶段。
这个阶段的目的是创造一种自由、宽松、祥和的氛围,是大家得以放松,进入一种无拘无束的状态。主持人宣布开会后,先说明会议的规则,然后随便谈点有趣的话题或问题,让大家的思维处于轻松和活跃的境界。
3.明确问题。
主持人扼要地介绍有待解决的问题。介绍时须简洁、明确,不可过分周全,否则,过多的信息会限制人的思维,干扰思维创新的想象力。
4.重新表述问题。
经过一段讨论后,大家对问题已经有了较深程度的理解。这时,为了使大家对问题的表述能够具有新角度、新思维,主持人或书记员要记录大家的发言,并对发言记录进行整理。通过记录的整理和归纳,找出富有创意的见解,以及具有启发性的表述,供下一步畅谈时参考。
5.畅谈阶段。畅谈是头
什么是头脑风暴法
最新常用质量工具培训教材
头脑风暴法--Brain Storming
□ 背景说明
头脑风暴法又称智力激励法、BS法,是由美国创造学家A.F.奥斯本于1939年首次提出、1953年正式发表的一种激发创造性思维的方法。此法经各国创造学研究者的实践和发展,至今已经形成了一个发明技法群,如奥斯本智力激励法、默写式智力激励法、卡片式智力激励法等等。
在此主要介绍第一种方法奥斯本智力激励法,它是后两种方法的基础。后两种方法只作一般性简介。 学习和掌握这一方法,不仅能培养员工的创造性,还能提高工作效率,塑造一个富有创造性的工作环境。 □ 方法大意
智力激励法是一种通过会议的形成,让所有参加在自由愉快、畅所欲言的气氛中,自由交换想法或点子,并以此激发与会者创意及灵感,以产生更多创意的方法。具体来说:
1. 培养对象:一般员工、管理者、监督人员、领导干部都可参与,并根据需要从各阶层人员中各抽几名。
2. 培养目标:培养参加人员的创造性能力,激发他们的创造性思维,以得到创造性的构想。
3. 培训内容:根据各企业需要确定,如给产品命名、创造新产品等需要大量构想的课题均可。
4. 培训方式:会议讨论方式。
5. 培训时间:会议时间一般为30分钟。
□ 具体操作
准备阶段
1. 选定基本议题
风险评估技术-头脑风暴法
风险评估技术-头脑风暴法
头脑风暴法
1 概述
头脑风暴法(Brainstorming)是指刺激并鼓励一群知识渊博的人员畅所欲言,以发现潜在的失效模式及相关危险、风险、决策标准及/或处理办法。“头脑风暴法”这个术语经常用来泛指任何形式的小组讨论。然而,真正的头脑风暴法包括旨在确保人们的想象力因小组内其他成员的思想和话语而得到激发的特殊技术。
在这种技术中,有效的引导很重要,其中包括开始阶段刺激讨论;定期鼓励小组进入相关领域;捕捉讨论中产生的问题(讨论通常很活跃)。 2 用途
头脑风暴法可以与下述的其他风险评估方法一起使用,也可以单独使用,来激发风险管理过程及系统生命周期中任何阶段的想象力。头脑风暴法可以用作旨在发现问题的高层次讨论,也可以用作更细致的评审或是特殊问题的细节讨论。 3 输入
召集一个熟悉被评估的组织、系统、过程或应用的专家团队。 4 过程
头脑风暴法可以是正式的,也可以是非正式的。正式的头脑风暴法组织化程度很高,其中参与人员提前准备就绪,而且会议的目的和结果都很明确,有具体的方法来评价讨论思路。非正式的头脑风暴法组织化程度较低,经常更具针对性。
在一个正式的过程中,应至少包括以下环节:
● 讨论会之前,主持人准备好与讨论内容相关
头脑风暴(BRAINSTORMING)
头脑风暴法又称智力激励法、BS法,是由美国创造学家A.F.奥斯本于1939年首次提出、1953年正式发表的一种激发创造性思维的方法。z z zT TogetherzE EveryonezA AchievezM More
六个西格玛(Six Sigma)
海航集团(HNA GROUP)
头脑风暴(BRAINSTORMING)
2004-3-5
Version 1.0
头脑风暴法又称智力激励法、BS法,是由美国创造学家A.F.奥斯本于1939年首次提出、1953年正式发表的一种激发创造性思维的方法。z z zT TogetherzE EveryonezA AchievezM More
六个西格玛(Six Sigma)
海航集团(HNA GROUP)
几个问题
在日常管理中: A:听说过头脑风暴? B:应用过头脑风暴方法?
2004-3-5
Version 1.0
头脑风暴法又称智力激励法、BS法,是由美国创造学家A.F.奥斯本于1939年首次提出、1953年正式发表的一种激发创造性思维的方法。z z zT TogetherzE EveryonezA
用对应法解决问题
用对应法解决问题(二)
姓名( )
王老师到体育用品商店为学校买球,计算了一下,要买5个足球和3个篮球需要付244元;而买2个足球和3个篮球只需要付139元。请你算一算,足球和篮球每个各多少元?
王老师到体育用品商店为学校买球,计算了一下,要买5个足球和4个篮球需要付267元;而买2个足球和3个篮球只需要付139元。请你算一算,足球和篮球每个各多少元?
小孙买苹果3千克,香蕉2千克,共付款12元;小刘买同样价格的苹果3千克,香蕉5千克,共付款21元。买1千克苹果和1千克香蕉各付多少元钱?
某车间有3个生产班组,第一组有5人,共生产零件167个;第二组比第一组多2人,共生产零件206个;第三组和第二组工人一样多,生产的零件却比第二组多10个。这个车间平均每个工人生产零件多少个?
一块地,如果用同样的拖拉机耕,4台耕4小时后,有8公顷没耕;3台耕6小时后,有4公顷没耕。这块地共有多少公顷?
有白、红黑三种颜色的球,白球和红球共15个,红球和黑球共18个,黑球和白球共9个,问三种球各多少个?
王强的爸爸
用消去法解决问题
消去问题
消去问题就是用消法来解决问题。
在有些应用题里,给出了两个或两个以上的未知数量的关系,要求出这些未知量的数量。我们子啊解题时,可以通过比较条件,分析对应的未知量变化情况,想办法消去其中一个未知量,从而把一道数量关系较复杂的题目变 成较简单的题目解答出来,这样的解题方法,我们通常把它叫做“消去法”
消去问题的基本解题方法:消去问题一般通过“代入法”或“加减法”消去一些未知量,使数量关系较复杂的题目变得比较简单。 例1:5只同样的小猪和18只同样的小羊总价值3960元,已知1只小猪和3只小羊的价钱相等。求每只小猪和每只小羊各值多少元?
例2:甲、乙两厂做同一种零件,甲长做7小时,乙厂做8小时,一共做零件324个;甲厂做5小时的零件数等于乙厂做2小时的零件数,两厂每小时各做零件多少个?
例3:学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个茶杯,共用去118元。水瓶和茶杯的单价各是多少元?
1
例4:小华第一次买3个篮球和5个足球共用去480元,第二次买同样的6个篮球和3个足球共用去519元。篮球和足球的单价各是多少元?
例5:甲买了8盒糖和5盒蛋糕共用去171元:乙买了5盒糖和2盒蛋糕
自我创新的”头脑风暴”
”头脑风暴”
自我创新的”头脑风暴” 自我创新的”头脑风暴”形式: 形式:集体参与 时间: 分钟 时间:10分钟 材料: 材料:回形针 游戏规则: 游戏规则:你的点子不需要是实用的 没有所谓正确或是错误的解决方法 任何方法都不是愚蠢的 在产生点子的时候你如何处理回形针 都没有关系 除了固定少量的纸张之外,回形针还会有哪些用途呢? 除了固定少量的纸张之外,回形针还会有哪些用途呢?
”头脑风暴”
决策与创新 应用: 应用: (1)创新能力训练 ) (2)创新意识培养 )
”头脑风暴”
年轻的老夫人
”头脑风暴”
两个位于中心的圆哪个大? 两个位于中心的圆哪个大?
”头脑风暴”
男人or英文单词 男人 英文单词? 英文单词
”头脑风暴”
这幅画里面有多少个人或多少张脸呢? 这幅画里面有多少个人或多少张脸呢?
”头脑风暴”
讨论 1.我们的思维定势(态度)是如何影响到我 .我们的思维定势(态度) 们的认识的? 们的认识的? 2.我们有哪些其他常有的态度影响了日常活 . 动? 3.我们可以做些什么来开放我们的思想以汲 . 取新知识? 取新知识?
”头脑风暴”
沟通故事:走向哪扇门? 沟通故事:走向哪扇门?在一个古老的王国, 在一个古老的王国,美丽的公主爱上了英俊善良的
用列表法解决问题的策略
用《列表法》解决问题的策略
一、 说教材 (一) 教材分析
《解决问题的策略》是新苏教版小学数学教材四年级上册第五单元中的内容。本节内容安排了两个例题,列表法解决问题的策略是解决问题的重要的思想方法,它是正确、合理、灵活地进行问题解决的思维方式,掌握得好与坏将直接影响学生解决问题的能力锻炼与提高。这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,初步了解同一问题可以有不同的解决方法的基础上学习的。本课系统研究用列表的方法收集、整理信息,并在列表的过程中,分析数量关系,寻求解决类似归一、归总的实际问题的有效方法。学好本课知识,将为以后学习用画图法来解决实际问题奠定知识、思维和思想的基础。安排的例题,主要是呈现同学们熟悉的学校生活情景,提供数学信息,让学生经历列表整理信息的全过程,再通过“寻求策略—解决问题—发现规律”的系列活动,使学生在解决问题的过程中感受列表整理数据信息策略的价值,并产生这一策略的心理需求,形成解决问题的策略,从而提高学生解决问题的能力。 (二)学情分析
本课所研究解决的数学问题,学生在以往的学习过程中,在生活的实践中,有一定的整理信息分析问题和解决问题的经验,但一般处于无序状态,通过今天的学习,将学生无序思
用列举法解决问题(2)
单击页面即可演示
有三张面值1元、2元和5元的人民币,能够组成多 少种不同的币值? 只取1张 1元 2元 5元 币值1 2 √ √ √ 5 3 √ √ √ 6
取2张√ √ √ 7
取3张√ √ √ 8
答:一共能组成7种不同的币值。
例 3 旅游团23人到旅馆住宿,住3人间和2人间(每 个房间不能有空床位),有多少种不同的安排 方法? 分析:安排23人住宿,可以住2人间,也可以住3 人间,但每个房间不能有空的床位,也就是说,每个 房间都应该住满。而符合要求的安排有多少种,需要 我们一一列举,并加以具体的分析和计算。
从只住一个3人间想起。
住1个3人间,还剩20人,需10个2人间。 住2个3人间,还剩17人,需9个2人间。 (有空床位,不符合要求) 接下去应该怎么想?小组讨论交流: 住3个3人间,还剩14人,需7个2人间。 住4个3人间,还剩11人,需6个2人间。(有空床位) 住5个3人间,还剩8人,需4个2人间。 住6个3人间,还剩5人,需3个2人间。(有空床位) 住7个3人间,还剩2人,需1个2人间。 住8个3人间。(有空床位) 答:有4种不同的安排。
我们可以通过 列表来寻找答案。
3人间/间 2人间/间
1 10
2 —
3 7
4 —
5 4
6 —
7 1
答:
SMT焊接缺陷分析教学中头脑风暴法的应用
BS(Brain Storming)法,最早意为精神病患者的精神错乱,而现在则衍生成为产生新观点和创新思维的激励方法。文章仅以此方法作为手段,在表面组装技术工艺教学中,循序渐进的激发学生的创新思维和分析能力,开拓思路,完成对于SMT工艺技术中最重要的内容——焊接缺陷的分析,达到了非常理想的教学效果。最后还简要的探讨了该方法的推广。
Vau n i e r g l e E gn e i n
2 5 2
S MT焊接缺陷分析教学中头脑风暴法的应用Th p i a i n o a n so m i g i h M T S l e i g De c ay i a h n e Ap l t fBr i - t r n t e S c o n o d r n  ̄ tAn l ssTe c i g
刘晨 LuC e i h n(陕西职业技术学院,安 7 0 0 )西 1 1 0(h a x rfsinlS i olg, i n7 0 0 C ia S a n i oes a kl C l e X ' 1 10, hn ) P o l e a
摘要: S Ba t mn ),意为精神病患者的精神错乱, B ( r nS r i法最早 i o